
Multi-agent Reinforcement Learning for Fleet Management: A Survey

Haoyang Chen1, *, †
1Computer science and Engineering. Southeast University

Nanjing, China
*hy_chen@seu.edu.cn

Zhuoming Li2, *, †
2Computer science and Engineering. Southeast University

Nanjing, China
*leezhuoming@seu.edu.cn

Yuxin Yao3, †
3Department of Computer Science. University College

London

London, UK

yuxin.yao.19@ucl.ac.uk

†
These authors contributed equally.

Abstract—Fleet management has achieved great success

benefiting from the application of deep reinforcement learning

(DRL) in recent years and has yielded many successful

commercial applications like ride-hailing services, whose basic

goal is to efficiently manage the fleet of vehicles to meet the

demand separated temporally and spatially. However, research

that provides insight about how existing methods succeeded in

dealing with massive agent interactions from a multi-agent

perspective is still missing. In this paper, we review the RL

methods of order dispatching and vehicle re-positioning in

recent years, and classify them from the perspective of multi-

agent reinforcement learning (MARL). We provide a

comparison of vehicle-based methods, grid-based methods, and

order-based methods, along with the popular datasets and open

simulators. Afterward, we discuss several challenges and

opportunities for the application of DRL in this domain.

Keywords- multi-agent reinforcement learning; fleet

management; ride sharing; order dispatching; vehicle re-

positioning;

I. INTRODUCTION

As a well-investigated programming problem, fleet
management aims to manage the fleet of vehicles to meet the
customers’ requests distributed temporally and spatially,
which has shown a wide range of application prospects
because it involves different types of vehicles such as
commercial delivery vehicles, taxis, locomotives, truck
tractors. Many of them operate in a demand-responsive mode,
i.e., the demands for services are not known beforehand and
the fleet has to be deployed and managed in real-time [1],
which brings great challenges to fleet management.

According to the previous surveys [1, 2], the modeling and
algorithm around order dispatching, vehicle routing, and re-
positioning, are the main topics in fleet management. Order
dispatching refers to matching the customers’ requests to
available vehicles. Vehicle routing, also known as vehicle

routing problem (VRP), focuses on the route programming
between targets under given constraints. Vehicle re-
positioning is to guide idle vehicles to specific locations in
anticipation of fulfilling more requests in the future [3].

Benefiting from the rapid development of artificial
intelligence, Deep Reinforcement Learning (DRL) is
gradually playing a more and more important role in
Intelligent Transportation Systems (ITS) and has been proved
to be essential in solving the problems of fleet management
[2, 3]. Since the decision-making during the fleet management
process is sequential and relies on the state and time, it could
be modeled as a Markov Decision Process, which could be
solved by reinforcement learning algorithms [3]. To achieve
efficient vehicle allocation, order dispatching and vehicle re-
positioning could be improved and optimized with different
deep reinforcement learning algorithms. Most papers implied
and developed model-free algorithms including DQN, PPO,
REINFORCE, while some model-based algorithms are
employed as well.

A multi-agent system is a group of autonomous,
interacting entities sharing a common environment, which
they perceive with sensors and upon which they act with
actuators [4]. Since the fleet management system can be
typically modeled as a multi-agent system, multi-agent
reinforcement learning (MARL), which provides a more
natural perspective to deal with the distributed agents, is
playing an increasingly significant role in this field. This
method is based on DRL but focuses on its identical
challenges, e.g., the formal statement of the multi-agent
system’s learning goal [4].

This survey provides a comprehensive analysis on how
reinforcement learning helps address the problem of fleet
management. We want to focus especially on the MARL
aspect, as well as mentioning several innovative and
instructive ideas based on MARL. Chapter 2 mainly focus on
the basic concepts and advanced algorithms in reinforcement
learning. The core of this survey lies in Chapter 3 and 4. First
we break the problem of fleet management into three sub-

problems --- order dispatching, vehicle routing and vehicle re-
positioning. In each section of the sub-problems, we
categorize the investigated methods into three groups, the grid
based algorithms and vehicle based algorithms as well as other
special methods. Non-deep reinforcement learning methods
already provided some sufficiently efficient solution for
vehicle routing problem, resulting few DRL methods are
applied on vehicle routing. Thus in this paper we only focus
on the other two problems.

Due to the underdevelopment of multi-agent
reinforcement learning in the past years, previous surveys
mostly focus on the single-agent view, thus not paying enough
attention to multi-agent methods. In the section of MARL of
fleet management, we further classify the methods into three
categories according to their selection of agents, which are
grid-based methods, vehicle-based methods and other special
methods at last. For each of the methods included, we analyze
their performance and their unique metrics. In the final chapter
of our survey, we provide an insightful analysis of currently
confronted challenges as well as possible development
directions of this field.

II. REINFORCEMENT LEARNING

The basic concepts and advanced algorithms applied in
fleet management system using reinforcement learning are
briefly explained below. This paper focus on multi-agent
solutions, which will also be introduced.

A. Single-agent RL

Due to the feature that the decisions made by a fleet
management system are sequential and they depend on real-
time environment situations and time, the Markov decision
process could be applied to solve the problem [3].

A Markov decision process could be represented as a tuple
< 𝑆, 𝐴,𝑃, 𝑅 > where 𝑆 represents for the set containing
possible states of the environment, 𝐴 represent for the set of
possible actions of agents, 𝑃 represent for the transition
probability function, the R represents for the reward function
[4]. The agent takes the current environment state 𝑠𝑡 ∈ 𝑆 at
step 𝑡 and then decide about the next action 𝑎𝑡 ∈ 𝐴, which
lead to a transition from 𝑠𝑡 to 𝑠𝑡 + 1 in step 𝑡 + 1 because
the agent performing action interact with the environment.
The reward 𝑟𝑡 is produced by reward function after agent
takes action at [5]. The action chosen relies on the policy
function 𝜋(𝑠): 𝑆 → 𝐴. The sequential process ends when it
achieves a terminal state. The agent is trained with different
algorithms to achieve the maximum cumulative reward of the
process [3].

The state-value function 𝑉𝜋 indicates the expected
cumulative reward starting at a specific state under policy 𝜋:

𝑉𝜋(𝑠) = 𝔼𝜋 (∑  

𝑇

𝑡=0

𝑅𝑡 ∣ 𝑠0 = 𝑠) (1)

where 𝑅𝑡 = 𝛾
𝑡𝑟𝑡 and 𝛾 is the discount factor, which

indicates importance of the future reward.
The action-value function 𝑄π , similarly, indicates the

expected cumulative reward starting at state 𝑠, taking action a
under policy 𝜋 [3, 6]:

𝑄𝜋 = 𝔼𝜋 (∑  

𝑡=𝑇

𝑡=0

𝑅𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎) (2)

The Bellman equations of value function are shown below,
which indicates the relationship between the value of the
current state and the value of its future states [3].

𝑉(𝑠𝑡) =∑ 

𝑎𝑡

𝑃(𝑠𝑡+1, 𝑟𝑡)(𝑟𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉(𝑠𝑡+1)) (3)

With the model-based method, the decisions of action rely
on predicting future states. With the estimated transition
function and reward function, the action that could result in
maximum value is computed by iterating the Bellman value
equation [5]. Conversely, model-free methods cannot predict
how the action they take changes the environment state but
interacts with the environment [6]. However, they are more
useful under complex environments where the reliable
transition function and reward function are hard to estimate
[2]. The policy and value function are learned from data. Thus,
the model-free methods are more commonly used in fleet
management.

Value-based methods and policy-based methods are the
two categories of model-free methods. In value-based
algorithms, the value of a given state at step 𝑡 is estimated.
The Q-learning is applied to learn the optimal actionvalue
function, where the action-value function is iteratively updates
by [3]:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + α(𝑟 + γ𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′) − 𝑄(𝑠, 𝑎))

(4)

Whereas for the policy-based algorithms, the state-value
pair is not required to be estimated, but they search for an
optimal policy. A parameterized policy is chosen at first, and
then the parameters in the policy are updated to maximize the
value function [5].

B. Multi-agent RL

However, the single-agent may face difficulties during
working with the fleet management problems due to the nature
of multiple drivers or grid cooperating to achieve the same
goal. Thus, employing multiple agents for decision-making is
a reasonable choice. The Markov decision process is
generalized to the Markov game involving multi-agents.
Markov game could be described as a tuple <
𝑆, 𝐴1, … , 𝐴𝑁 , 𝑃, 𝑅1 , …𝑅𝑁 > , where 𝑆 is the finite set of the
environment state, 𝑁 is the number of agents, 𝐴𝑖 is the finite
set of the action space of agent 𝑖 , yielding 𝒜 = 𝒜1 ×…×
𝒜𝒩 is the joint action space, 𝑓: 𝒮 ×𝒜 × 𝒮 → [0,1] denotes
the state function of transition probability, 𝑅𝑖 : 𝒮 × 𝒜𝒾 → 𝑅
denotes the reward function of agent 𝑖. The policy of agent 𝑖
is defined as π𝑖  :  𝒮  ×  𝒜𝒾 →  [0,1], yielding π :  𝒮  ×  𝒜 →
[0,  1] as the joint policy. According to the definition, the
transition of state is decided by the joint action of all the agent,
therefore the expected return 𝑅𝑖

𝜋(𝑠) for agent 𝑖 depends on the

joint policy 𝜋,

𝑅𝑖
π(𝑠) = 𝔼 {∑γ𝑡𝑟𝑖,𝑡+1

𝑇

𝑡=0

} (5)

where the 𝑟𝑖,𝑡+1 is the reward of agent 𝑖 in timestep 𝑡. The

value function and the state-action function of each agent
under joint policy π, initial state s and joint action 𝑎 =
[𝑎1, … 𝑎𝑁] could be evaluated with algorithms like DQL, in
which the best performing policies of each agent could be
discovered.

III. REINFORCEMENT LEARNING FOR FLEET MANAGEMENT

A. Order Dispatching

In this section, proposed methods for order dispatching
will be discussed from a MARL perspective. We will firstly
give a problem statement of order dispatching in fleet
management. The necessary mathematical formulation of the
problem will be included. Then, the main challenges to the
application of MARL in order dispatching will be discussed.
After all, the proposed methods for order dispatching will be
discussed from the perspective of MARL. These methods will
be mainly organized by the different choices of agents.

The Order dispatching module in fleet management,
which is also learned as the online matching [3], is to best
assign customers' requests to the available drivers in real-time.
The geographical position of the available vehicles, the
starting position, the destination of the unmatched orders, as
well as their price given by the pricing module are provided
as the input. Dispatching plans of how and when to match the
orders and vehicles are expected to be given as the output.

What is a “best” order dispatching ideally? Many metrics
have been proposed to help form an optimization target.

The metrics to be optimized can be roughly classified into
short-term metrics and long-term metrics. The short-term
metrics, e.g., minimizing the waiting time of the customer,
maximizing the immediate income from the current order, can
be optimized directly according to the distribution of orders
immediately. The long-term metrics, typically the expected
accumulated income of the rest of the day, is also related to
the current decision, but cannot be learned immediately.

Another classification of these metrics can be driver-
centric and customer-centric. From the driver's perspective,
the ultimate goal is to maximize its income, or the in-service
time, the order response rate as well. From the customer's
perspective, the grade of service should be guaranteed by the
platform, i.e., the waiting time should be minimized.

These critics are not exclusive [7], e.g., reducing pickup
waiting time also decreases the cancellation probability of an
order. [8, 9] prefer maximizing Gross Merchandise Volume
as the learning goal, while [10] prefers maximizing the
accumulated driver income and order response rate. Since the
orders will be canceled after a period of waiting, [11]
considers the metric of maximizing the acceptance rate of
orders as more prominent than the metric of minimizing the
waiting time.

The mechanism of how the orders are delivered to the
drivers is also various. The simplest mechanism assumes that
one vehicle is matched to one order, and the order will not be

re-assigned to the others unless the driver refuses it, which is
named as a one-to-one dispatching pattern in [11]. Another
mechanism is that one order will be dispatched to many
drivers, and the first driver who accepts it gets the order, viz.
The driver can select one order to accept from a recommended
order list provided by the platform, which is named as a one-
to-many pattern [12]. The most complicated mechanism is
that, based on a one-to-many pattern, the driver can accept
multiple orders, and complete them one by one, which is
named as a many-to-many pattern [11]. Most researchers take
the one-to-one mechanism as the model assumption. [11]
implies that the additional complexity of mechanism
assumption requires a more complicated design, which will be
discussed in the later section.

1) Multi-agent reinforcement learning challenges

In order dispatching, the state 𝑠 ∈ 𝒮 can be defined as <
𝐷0, 𝐷𝑣 , 𝑡 >, where 𝐷0 is the distribution of orders, 𝐷𝑣 is the
distribution of vehicles, t is the current timestep. Commonly,
the map is discretized into hexagon girds, therefore the
location of order or vehicle is expressed by the index of gird
[13]. [14] applies a link-node-based micro-network
representation, leveraging the heterogeneous traffic network
topology. Besides, it's necessary to append the timestep t into
the definition since the distribution of orders or vehicles may
strongly have a temporal characteristic, e.g., morning rush
hour and evening rush hour. Therefore, the characteristic of
the Markov Decision Process (MDP) can be guaranteed.

 𝑃(𝒮𝑡+1 = 𝑠𝑡+1|𝒮𝑡 = 𝑠𝑡 , … , 𝒮0 = 𝑠0)
= 𝑃(𝒮𝑡+1 = 𝑠𝑡+1|𝒮𝑡 = 𝑠𝑡) (6)

The game in order dispatching is likely to be a fully
cooperative game, where the platform aims to maximize the
return of every agent without competition. Therefore, the
reward 𝑅𝜋 of the system can be expressed as the sum of the
reward of every agent 𝑅𝑖:

𝑅π(𝑠) =∑𝑅𝑖
π(𝑠)

𝑛

𝑖=1

 (7)

In ride-hailing service or ride-sharing service, orders and
vehicles can be generally viewed as homogeneous. Prior
knowledge of order dispatching is quite abundant, e.g., the
driver should pick a nearby order, therefore can be utilized to
help the learning. Coordination between agents in order
dispatching is quite necessary, which enables the
improvement of global optimal dispatching based on
cooperation. Thus, the agent should be aware of other agents
and estimate their policy. The input of each agent can be
global, i.e., each agent can observe the whole part of state 𝑠 ∈
𝒮.

However, there are some challenges in MARL [4]. First,
the curse of dimensionality, i.e., the exponential growth of the
discrete state-action, brings not only heavy computational
expense but obstacles to fit the prediction of state-action space
from historical data of limited number. Second,
nonstationarity arises because the best policy of each agent is
changing resulting from the activation of other agents. Third,
it's hard to specify a unified learning goal for the MARL

system, because the agents’ returns are correlated and cannot
be maximized independently. Forth, the coordination between
agents is necessary, e.g., the action space of the agent depends
on the action of other agents. We are interested in how these
difficulties are solved or are avoided in the proposed method.
While applying MARL into order dispatching, these
challenges above become more specific and background-
related. We will mainly discuss how the MARL environment
is modeled, i.e., what the agent is on behalf of and what the
action means since it is decisive to the characteristic of the
state-action space. Therefore, proposed methods will be
classified and be discussed in the classification of agent
modeling type.

2) Vehicle-agent
Modeling the vehicle as the agent can be intuitive. A

typical method for order dispatching is the learning and
planning approach [8, 9, 15]. The offline learning step
performs Temporal-Difference (TD) update to learn the
evaluation of the spatiotemporal state, while the online
planning step uses these values to compute a bi-partite graph
matching problem. It makes a simplification and takes the
single-agent perspective to solve this problem, viz. The state
𝑠 =< 𝑔𝑣 , 𝑡 > contains the region index 𝑔𝑣 where the agent is
located in and the timestep 𝑡. Correspondingly, the action 𝑎 =
< 𝑔𝑠𝑟𝑐 , 𝑔𝑑𝑒𝑠𝑡 > represents an order which starts in 𝑔𝑠𝑟𝑐
region, and ends in 𝑔𝑑𝑒𝑠𝑡 region. Therefore, the state 𝑠 which
performs the action 𝑎 will transform to the next state 𝑠′ =<
𝑔𝑑𝑒𝑠𝑡 , 𝑡 + Δ𝑡 > , while Δ𝑡 is the expected time cost for
transportation from 𝑔𝑣 to 𝑔𝑠𝑟𝑐, then to 𝑔𝑑𝑒𝑠𝑡.

To be more detailed, in the planning step, a dispatching
time window, where unmatched orders and available drivers
are pooled and matched simultaneously, is created. In the
dispatching window, suppose there are 𝑛 orders and 𝑚
available drivers. Orders and drivers can be formulated as a
bipartite graph, and the edge 𝑤𝑖𝑗 , representing a potential

matching, is evaluated as a reward for assigning order 𝑖 to
driver 𝑗. The evaluation of reward is a state-action value given
by the Q-network trained in the learning step. Therefore, the
dispatching policy is modeled as a Combinatorial
Optimization problem and can be solved by some classic
matching algorithm, e.g., the Hungarian Method (a.k.a. KM
algorithm). In the learning step, the matching is modeled as an
MDP, and single-agent reinforcement learning is applied to
acquire the evaluation of state-action value. All the agents
share the same policy. The application of Deep Reinforcement
Learning (DRL) enables the model to generalize beyond the
historical training data, as well as to leverage knowledge
transfer across multiple cities (Transfer Learning) [9, 15].
Batching more orders and drivers enables a more global
optimization, but results in an expense of longer order
response time.

Figure 1. bipartite graph modeling for order dispatching

One of the challenges to the learning and planning

approach is that it cannot reflect the fluctuation of supply and
demand in real-time. The estimation of spatiotemporal state-
action value is based on historical data, without the
involvement of the current transition of environment. This
challenge can be reduced by redesigning the structure of the
Q-network [15, 16].

What makes the single-agent reinforcement learning
practical in the multi-agent environment is that the learning
and planning approach extracts the necessary interaction
between vehicles into the planning procedure, leaving the
learning procedure undifferentiated to every agent. It makes
full use of the homogeneity of agents and simplification is
made. The curse of dimensionality is avoided since the finite
set of state 𝒮 and action 𝒜 have limited size. Nonstationarity
in training is also avoided, as the policy of the agent is
independent. The dispatching policy in combinatorial
optimization is called collectively greedy [9]:

argmax
𝑎∈𝒜

∑ 

𝑠∈𝒮

𝑄(𝑠, 𝑎(𝑠)) (8)

where 𝑄(𝑠, 𝑎(𝑠)) denotes a feasible edge in the bipartite

graph. It provides an optimization objective to the system, and
the constraints of “one order can only be assigned to one
driver”, etc., consist of the coordination between agents.

However, the learning and planning approach does not
produce many advantages of MARL, like the inherent
robustness and parallel computational efficiency which is
based on the distributed nature, because planning procedure
highly relies on centralized control. [17] also models each
vehicle as the agent, but takes the complex interactions
between drivers and orders into consideration by applying the
Mean Filed MARL method. Instead of giving centralized
control to all the vehicles and letting them share the same
policy, it assumes that each agent makes decisions
independently. By comparison, the centralization of the
learning and planning approach has the potential “single point
of failure” [18], i.e., the failure of the centralized authority
control will fail the whole system. Also, a heterogeneous
agent setting with individual-specific features is supported.

The design of state and action space is similar to the
learning and planning approach, but jointly in the multi-agent
environment, viz. The state is denoted as 𝑠 =<
𝑔𝑣,1, … , 𝑔𝑣𝑛 , 𝑡 > , while the action is denoted as 𝑎 =<

𝑎1, … , 𝑎𝑛 >. The reward of each agent is, therefore, dependant
on the joint action of all the agents. The nonstationarity in
training arises. For each agent, the training of its state-action
value is hard to converge because the policy of other agents is
also changing in this procedure. [17] adopts the mean field
approximation to simplify the local interactions by taking an
average action among neighbourhoods [19]. The learning
target of each agent is to maximize its cumulative reward,
instead of the global reward, while the demand-supply gap is
defined as a constraint. The mean-field method lessens the
curse of dimensionality, making the additional cost for the
growth of the number of agents acceptable.

Since the fully distributed order-driver matching decisions
are made independently without dispatching time window, the
matching of order is performed asynchronously to avoid
matching collision, viz. The matching is competitive and the
first driver who sends the matching request to the platform
will get the order dispatched. It also acts as the coordination
between agents at the minimum level. The matching collision
is intrinsically the problem that dynamic action space is
dependent on the behaviour of other agents.

3) Grid-agent

[20, 21] prefer to model the discrete region grid as the
agent. They regard the grid as the manager of vehicles and
unify the order dispatching problem and re-positioning
problem into the same form, i.e., matching the orders and
vehicles inside the grid, and distributing the redundant
vehicles to the neighbour girds. Specifically, re-positioning
the vehicle to neighbour grids or staying at the current grid is
treated as fake orders, which is a trick to unify the two tasks
in form. Self-organization techniques are implemented to
decrease the waiting time as well as to enhance the utilization
rate of vehicles. It models the order dispatching as a large-
scale parallel ranking problem, instead of a sequential
decision-making problem.

 A fundamental denotes of the state can be expressed as
𝑠 =< 𝑁𝑣 , 𝑁𝑜 >, where inner elements represent the number
of available vehicles, number of unmatched orders.

Figure 2. dispatching and re-positioning in gird-agent

modeling environment
[21] applies a learning-and-planning-like method. [20],

however, integrates a geographical hierarchy reinforcement
learning (HRL) to decompose the dispatching in sub-tasks.

District of grids is modelled as the manager agent, raising and
delivering sub-tasks to the worker agents, i.e., small gird. The
spatiotemporal balance of supply and demand corresponds to
the tasks of higher level, while the matching of orders and
vehicles corresponds to the lower. The manager's action is to
generate goals for its workers, while the worker's action is to
provide a ranking list of relevant real orders [20].

4) Order-agent

Suppose the platform runs in the mechanism that
recommends the most suitable orders to the driver and allows
the driver to choose from some selections, the dispatching
model based on one-to-one matching assumption cannot work
well. Taking the rejection behaviour of drivers into
consideration helps to adapt the demand of one-to-many or
many-to-many dispatching pattern, i.e., an order is dispatched
to many vehicles [11]. The idea of order-agent, i.e., modelling
the order as the agent, comes from considering the driver’s
rejection behaviour. It provides another perspective to see the
dispatching problem.

In [11], the order is defined as the agent, while selecting
the matching vehicles is defined as the action. [11] proposed
a learning and planning solution, which is quite similar to the
mentioned approach before. It also has an offline learning step
to learn the state-action value, and an online planning step to
give centralized dispatching decisions to all the orders. In the
learning step, historical data is used to train for predicting the
expected response time in a one-to-one dispatching situation,
i.e., how the response time will change if the order is
dispatched to different vehicles. Reinforcement learning is
applied to solve such a response process. In the planning step,
the probability distribution of response time is involved in the
reward function. Orders and vehicles are treated as nodes in
bipartite graph, and combinatorial optimization is also utilized
to maximize the weighted matching, which is discussed in the
last section. [22] also defines the order as the agent and takes
a learning-and-planning-like solution under the one-to-one
matching assumption. However, it defines the action as
whether to enter the matching pool or to be delayed to the next
turn, expecting a nearer driver will be available in the next
timestep.

B. Vehicle Re-positioning

In this section, we are focusing on reinforcement learning's
application in the problem of vehicle re-positioning which is
also a sub-problem of fleet management [23]. In the first part
of this section, we present the problem statement of vehicle
re-positioning. Next, we put our attention on one of the most
important aspects of vehicle re-positioning which is
demand/supply predicting, we introduce some of the
advanced methodologies developed to address this problem.
In the third part, we are going to stress the use of multi-agent
reinforcement learning to help solve the problem of vehicle
re-positioning, by categorizing the different research papers
into two distinct classes according to their two main choices
of bases of their reinforcement learning agents, we offer a
thorough insight of their pros and cons, state and action space
formulation, relationships between agents, etc. respectively.
Based on the two categories mentioned above, we are also

introducing some of the basic algorithms designed for this
problem as well as their improvements. At last, we mention
several innovative ideas which are different from the popular
methods and are considered to have offered promising
directions for future research.

In a fleet management system, vehicle re-positioning is
often considered in parallel with order dispatching. Most
literatures develop two different systems at the same level for
order dispatching and vehicle re-positioning respectively.
Specifically, after the execution of order dispatching, the
vehicle re-positioning system operates on every idle vehicle
that was not assigned an order and assign them a location to
go before they receive an order. To be effective, vehicle re-
positioning systems generate the location according to
predicted future demand/supply gap, such that the assigned
vehicle plays the role of taking some pressure off the
exceeding supply of zone it was leaving as well as making up
the insufficient supply of its destination zone.

1) Prediction
In order for the vehicle re-positioning system to act

effectively as mentioned above, literatures use real-world
collected data to train their predictor. These datasets usually
include the specific time and location of every order, the
trajectory of different drivers as well as their status of
occupied or not. Since the actions of dispatching and re-
positioning will change the environment from what it is
supposed to be from the data sets, at most time researchers
needs to generate new data based on the given real-world
records.

However, since the reinforcement learning methods in
vehicle re-positioning are all making use of MDP and its
property that given the present, the future does not depend on
the past.

 𝑃(𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡 , … , 𝑆0 = 𝑠0)
= 𝑃(𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡) (9)

So that instead of building a separate system of predicting
the future demand and supply information, literatures usually
let the reinforcement learning system of re-positioning to
handle the predicting job itself. As when the reinforcement
learning algorithm is learning how to make appropriate
decisions given current states, it is also learning the Markov
Property of the environment, which is to say that it makes
decisions based on the given current state 𝑆 and a learned state
transition probability 𝑃 . This approach can be classified as
agent learns a model of the environment dynamic. On the
other side, researchers also proposed a different way of
building a data generator outside the agent [24, 25, 26, 27, 28].

 Among these proposed approaches, [24, 26, 27] used
convolutional neural networks (CNN) to generate the demand
information in a spatio-temporal manner. [25] made use of the
recurrent neural networks (RNN) to help predict future
demand in a sequential manner. [28] utilized the recently
developed graph neural networks (GNN) which uses
neighbour information to better formulate demand in a
contextual way. Using a model predictor outside the
reinforcement learning algorithm can help our agent reduce its
massive state space thus improving its scalability, as usual,

learning algorithms learn to re-position vehicles by acquiring
not only demand/supply information but also weather, time
and other complex external factors [28]. However, by using
an extra predictor, we can contract external factors into a small
state space and predict the demand information as well.

2) MARL algorithms

 Recent researches on vehicle re-positioning are showing
a trend of division on the choices of agents. In consistent with
the traditional methods of re-positioning vehicles without the
help of reinforcement learning, many research papers show a
way of abstracting vehicles as reinforcement learning agents
which are often considered homogeneous [28, 29, 30, 31].
While there are also many researchers who choose to
represent the demand and supply in a grid-based manner,
which is to segment the region used to conduct the experiment
in a square or hexagonal way. In the grid system, each grid is
an agent and is treated as heterogeneous. [20, 21, 32] The
prime distinction between the two approaches of modelling
agents is the difference in the executor of the actions. In a grid-
based algorithm, the action is often indicating how many
vehicles the grid needs to re-position. While in a vehicle-based
algorithm, the action indicates the location the vehicle needs
to be re-positioned.

3) Grid-based algorithms

As mentioned above, literatures use a demand predictor to
assist the agent in making decisions, since many researches
abstract the agents into grids, they simplify the prediction
module into a gird-based prediction. The most obvious
advantage of grid-based algorithms against vehicle-based
algorithms is that its low computational complexity. The
number of grid agents that a city usually is segmented is about
100 ~ 400 which is much smaller than that of vehicle-based
algorithms. Moreover, according to the grids' location as well
as their functions, the grids can be classified into several
classes and thus have their unique neural network to maintain.
In this manner, the grid-based algorithms treat the grid agents
as heterogeneous as different grids have their own
geographical features and behavioural patterns.

 The state space, at most time, is all the demand and supply
information on the map of each grid.

𝑆i = ⟨𝑖, 𝐷0, … , 𝐷𝑛, 𝑆0, … , 𝑆𝑛⟩ (10)

This is the simplest but most often used representation of
state space of grid-based algorithms, indicating that in a grid
system containing 𝑛 grids, the state of grid 𝑖 is made up of the
id of current grid, the number of orders that has not been
dispatched denoted as demand, as well as the number of idle
vehicles denoted as supply from 𝑔𝑟𝑖𝑑_0 to 𝑔𝑟𝑖𝑑_𝑛 [32]. This
design of state space is sufficient in information needed by
reinforcement learning algorithms to generate dispatch
actions. However, a vector consisting (2𝑛 + 1) elements can
sometimes be too large for normal reinforcement learning
algorithms, such a large state space can affect the scalability
of the algorithm which is a crucial factor in multi-agent
systems. To solve the problem of scalability while not
compromising the efficiency of the algorithm, [28] proposed

a contextual-based state representation. In a square-based grid
system, the state space for 𝑔𝑟𝑖𝑑_𝑖 is designed as follows.

𝑆𝑖 = ⟨𝑖,𝐷𝑖 , 𝑆𝑖 , 𝐷𝑛_1, 𝑆𝑛_1, … , 𝐷𝑛_8, 𝑆𝑛_8⟩ (11)

The State representation in this setting is composed by the
grid id 𝑖, the number of demand and supply for its neighbour
grids ranging from 1 to 8 denoted as 𝑔𝑟𝑖𝑑_𝑛. They proposed
that the information provided by its neighbour grids for the
current grid to make re-position actions is sufficient enough in
a contextual manner. Since in literatures a re-position action
usually moves a taxi to the neighbour grids of its location,
after using a GNN which will pass the neighbour grids
features into the current grid's when doing prediction on the
demand, the contextual way of giving only neighbour
information performed well in experiments.

 One possible design of the action space is a single ratio,
indicating how much vehicle of the current grid agent needed
to be re-positioned or to be added [21]. However, this design
of the action space only provides a rough description of the
amount of re-positioning while ignoring the direction. Thus,
this design of one single ratio need to operate in cooperation
with an extra matching function, which combine the Source
Grids that re-position out of itself with the Sink Grids that
needs extra vehicles together using a bipartite graph
combinatorial optimization problem. This seems to be a bit
complex and unnecessary compared with the more commonly
used design. The action space, could also be designed similar
to the state space. As mentioned above, a grid agent can only
move its vehicles to neighbour grids. So, if it is in a square
grid system, the action should be a vector of nine elements
which represent the grid itself and its eight neighbours. This
design outputs a vector of nine elements as follows.

𝑎𝑖 = ⟨𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8⟩ (12)

Where each element indicates a ratio of the number of
vehicles in current grid and by numbering the nine grids, we
set 𝑟4 to be the ratio of vehicles that needs to stay in their
current grid and the other elements suggest the amount of
vehicles to be moved to neighbour grids.

 The reward in a vehicle re-positioning system should
reflect the efficiency of the action in balancing demand/supply
the gap. For a grid system, an agent grid's goal is set to balance
its own demand and supply to the utmost extent. Thus, its own
information of demand and supply can be used to formulate
the reward function without using any other information of the
others [21].

𝑟𝑡
𝑖 = 1 −

|𝑁𝑢𝑚𝑑
𝑖 − 𝑁𝑢𝑚𝑠

𝑖 |

max{𝑁𝑢𝑚𝑑
𝑖 ,𝑁𝑢𝑚𝑠

𝑖 }
 (13)

The design of reward varies between papers and above is
one possible approach which reflects the equilibrium degree
of the agent 𝑔𝑟𝑖𝑑_𝑖. To maximize the reward, the agent has to
minimize the gap between demand and supply while keeping
as much vehicles and orders in its region.

 The design and usage of a grid system to model agent in
general is quite a simplification of the real-world dynamics. It

reduces computational complexity tremendously and has high
scalability due to its small number of agents and simple
representation of vehicles and orders. However, it
compensates many detail information in order to achieve its
simplicity. For example, the grid system treats the supply
information as a number of vehicles, which dropped the exact
location of each vehicle aside. The location for each order is
also blurred [32]. What's more, the agent's action only
determines how much vehicles to re-position while not
considering the difference between drivers which might affect
their willingness to go or to stay. Beside the problem of not
being detailed enough, the grid system for vehicle re-position
provides a handy environment to test new algorithms.

4) vehicle-based algorithms

 Another formulation of agents in solving vehicle re-
position problems using multi-agent reinforcement learning is
vehicle-based agents.[28, 29, 30, 31] The vehicle-based
algorithms, differs a lot from the grid-based algorithms,
instead of maintaining multiple neural networks for each
agent as the grid-based algorithms, vehicle-based algorithms
usually share the parameters between agents and thus
maintaining only one or a small number of neural networks
after the classification on the types of vehicles. Recent
researches treat the vehicles as homogeneous and are not
paying special attention to the classification of agents, which
makes these algorithms different from the heterogeneous grid-
based algorithms.

 However, the vehicle-based algorithms still have some
similarities with the grid-based algorithms in its basic
elements. In most research papers using a vehicle-based
system, a grid-like segmentation of the map is widely applied.
This is for the convenience of predicting the demand
information as well as the management of vehicle agents. In a
vehicle-based algorithm, grids are used to store the specific
information of orders and vehicles, they are also crucial
factors when designing the state space for vehicle-based
algorithms.

 The design of the state space is quite similar to that of
grid-based algorithms. Like a grid system, the optimization
target is to balance the demand and supply between the grids,
thus in most papers, the design of the state space is based on
the grid information. The design used in [28] can still be used
in a vehicle-based manner, which only take neighbour
information into consideration. However, like what was
considered a global view in grid-based algorithms, [30]
proposed a global state space design.

𝑆 = (𝑟𝑗 , 𝑠𝑗
′, λ𝑗  for all  𝑗 ∈ �̅�) (14)

The above equation indicates that the state is represented
by 𝑟𝑗 which is the number of idle vehicles in 𝑔𝑟𝑖𝑑_𝑗 , the

availability of in-service vehicles in 𝑔𝑟𝑖𝑑_𝑗 which is denoted

as 𝑠𝑗′ and the predicted demand around the grid denoted as 𝜆𝑗.
This is slightly different from the global view in grid-based
algorithms in that it has an element of 𝑔𝑟𝑖𝑑_𝑗 which is taking
into the consideration of the empirical probability of a vehicle
be assigned to a new request based on simulation results.
However, in real world data, the demand and supply gap

depend on spacial and temporal information, so researchers
believe the agents should also learn to make decisions based
on spatial and temporal information, not only on the amount
of global demand or supply. [29] proposed a different
representation of state space which combine the global state
together with spatial temporal information together.

𝑠𝑡
𝑖 = [𝑠𝑡 , 𝑔𝑡] (15)

Where the state of 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑖 at time 𝑡 is a concatenation of
the global state 𝑠𝑡 containing the spacial distribution of
available vehicles and orders as well as current time 𝑡 (using
one-hot encoding) and the one-hot encoding of the grid ID 𝑔𝑡.
After all, the state space should always provide the demand
and supply information to our agent, while the spacial and
temporal information are optional.

The action space of vehicle-based algorithms is totally
different from that of grid-based algorithms because the entity
of executing the action has changed. Since every vehicle is an
independent agent, they can make their own decisions of
which neighbouring grids to go or to stay. The most popular
design of action space is merely a number indicating the
destination grid [28, 29]. Where the action is extracted from
the output of the neural network which is a probability vector
noting the possibility of going to a certain neighbouring grid,
the length of the vector is 9 for a square grid system and 6 for
a hexagonal grid system. After extracting the action by
applying a 𝑚𝑎𝑥 operator on the vector in an exploitation
manner, we can get the index of the grid for the vehicle to go
to. Also, in some paper the action is formulated as certain
directions like {𝑁𝑜𝑛𝑒, 𝑁𝐸, 𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊,𝑊,𝑁𝑊,𝑁} , which
can be treated exactly as the index manner of representation.

The reward design has to reflect the quality of the re-
position action of current agent. Like in a grid-based
algorithm, no matter what kind of agent the algorithm uses,
the optimization goal is always set to balance the demand and
supply of both the Source Grid and the Sink Grid [21]. One
design of reward provided by [28] is to calculate the reward
of a re-position action conducted at time 𝑡 − 1 a time step
later, which only use demand and supply information of its
leaving grid and destination grid at time 𝑡 − 1.

 ω𝑧𝑖 =
𝑃𝑧𝑖

𝑡𝑗−1

𝐷𝑧𝑖

𝑡𝑗−1
 (16)

𝑟𝑡 =

{

 5 0 ≤ 𝜔𝑧𝑖 ≤ 1 and 𝑖 = 𝑔

−5 0 ≤ 𝜔𝑧𝑖 ≤ 1 and 𝑖 ≠ 𝑔

1

𝜔𝑧𝑖
 𝜔𝑧𝑖 > 1 and 0 ≤ 𝜔𝑧𝑔 ≤ 1

 0 𝜔𝑧𝑖 > 1 and 𝜔𝑧𝑔 > 1 and 𝑖 = 𝑔

−𝜔𝑧𝑔 𝜔𝑧𝑖 > 1 and 𝜔𝑧𝑔 > 1 and 𝑖 ≠ 𝑔

 (17)

The 𝜔𝑧𝑖 is a fraction of supply over demand at time step

𝑗 − 1 of 𝑔𝑟𝑖𝑑𝑧𝑖 , the following reward at time step t is

determined by the ratio of supply/demand of the Source Grid

and the Sink Grid and also taking consideration of the case
that the vehicle decided to stay rather than re-position.
Further, another design of reward function that does not
depends on the 𝑆𝑜𝑢𝑟𝑐𝑒 𝐺𝑟𝑖𝑑 was proposed by [29]. In their

paper, the individual reward 𝑟𝑡
𝑖.

For the i-th agent associated with the action 𝑎𝑡
𝑖 is defined

as the averaged revenue of all agents arriving at the same grid
as the i-th agent at time 𝑡 + 1. This is an example of using
vehicle revenue as the re-position rewards. Actually, the
optimization goal of balancing demand and supply is proved
to be in parallel with that of getting the maximum revenue for
each agent.

Generally, vehicle-based algorithms are more often used
than grid-based algorithms. Even if the number of vehicles is
massive, with the application of parameter sharing, the
thousands of agents can learn in a centralized manner with a
decentralized execution. Different from a grid-based
algorithm, a vehicle-based algorithm can pay special attention
to the vehicle and order's location and route. It uses the same
order predictor and the state space as the grid-based
algorithms while having a much simpler action space. But,
after a re-position action is generated, to calculate the reward
for this action in a more specific way, a vehicle routing
module may be needed to simulate the travel cost. In all, the
vehicle-based algorithms are more complicated than a grid-
based algorithm but it has more expanding space such as a
heterogeneous way of designing agents and a more precise
way to treat the interactions between agents.

5) Innovative Algorithm
Apart from the traditional multi-agent reinforcement

learning way of solving vehicle re-positioning problem, there
are two distinct and innovative methods. One is paying special
attention to the interaction between agents and their influences
on each other by applying mean-field reinforcement learning
(MFRL) in a vehicle-based manner [17]. This technique of
MFRL greatly reduces the state space from what used to
consider all the other agents' joint action around the current
one to a representation of their mean influence on the current
one. Since it is not considering precisely the number of other
agents or their features, the algorithm is providing a possible
solution of treating agents heterogeneously. Another
algorithm is based on the grid system. It applies the
hierarchical multi-agent reinforcement learning to the
hexagonal grid system where the grids are further specified as
manager and worker [20]. The hierarchical reinforcement
learning algorithms is proved to perform better at solving
complex problems than other algorithms.

IV. CHALLENGES AND OPPORTUNITIES

So far, Reinforcement Learning algorithms have been
proved to perform well in help solving fleet management
problems. Its capability of addressing complicated tasks in a
real-world scenario assisted many startups gaining profit.
Also, researchers are still paying efforts to make their
algorithms able to handle emerging real-world problems. In
this section, we discuss some of the problems to be solved in
reinforcement learning's application in fleet management as
well as providing some of the possible directions for solutions.

A. Unifying dispatching and re-positioning

While the problem of order dispatch and vehicle re-
position have been both well studied, they are mostly
conducted in a separated manner, which means, that most
paper either propose an algorithm designed to solve
specifically one of the two problems. However, order
dispatching and vehicle re-positioning have a strong
connection with each other.

When doing order-dispatching, we are not only matching
the drivers with a suited order but also evaluating what impact
such matching could have on the demand and supply gap of
both the zone where the order generated as well as the order's
destination. The order dispatching problem can be considered
as a limited vehicle re-positioning problem in that the vehicle
have limited choices of action where the action determines
both the income for the driver and the destination to re-
position. Unlike the normal re-position problem, order
dispatching has a re-position impact that is highly depending
on the available orders. Compared with the broader neighbor
zones to choose in vehicle re-positioning, order dispatching's
re-position is deeper which often consider zones away from
the current zone.

From another aspect, when doing vehicle re-positioning,
for a reinforcement learning algorithms to perform as
expected, researchers have to design the rewards for every re-
position action. Since every re-positioning action is assigned
with a reward, this has the same property as the actions in
order dispatching. If we represent the reward of an action in
the same way as the income in order dispatching and transfer
the possible zones to re-position as the destination for an
order, then the re-positioning problem can be seen in an order
dispatching way where the agent have to choose and order to
pick up, thus achieving the same effect as vehicle re-
positioning.

There are rarely papers focusing both the order
dispatching and vehicle re-positioning problems. [28]
proposed an algorithm for vehicle re-positioning but also
integrated the order dispatching module into their simulator
where vehicles are matched with the nearest order. They
treated the two problems respectively rather than a unified
manner. The idea of using fake order was first proposed by
[20], where they unified the vehicle re-positioning with order
dispatching and designed an order dispatching algorithm to
solve the two problems.

Future research should focus on integrating the order
dispatching and vehicle re-positioning in one general system.
Finding a way to unify the two problems is promising
considering the relationship is not to be neglected while
solving two problems respectively is computationally
expensive.

B. Map representation

Map representation acts as a necessary module in fleet
management to embed the geographical position into a
discrete state. The majority of existing methods follow a
similar convention and use gird system to split the spatial
world, with the shape of square [15, 33], or hexagon [10, 16,
17, 20, 34]. By selecting the neighbors of the grid, we can
simply get a rather rational range of consideration in dealing

with the interactions of agents. [15] supports multiple
resolutions of hexagonal grids, which helps the information
aggregation to happen at a different level. [33] uses cluster to
divide the megacity into independent regions and focus on
each of them separately, reducing the complexity.

However, a more reasonable representation of the map
should consider the topological of the road. The coarse-
grained grid representation cannot capture the real distance
from place to place. To be worse, the complicated road in
urban may deteriorate the planning and lead to infeasible
operation strategies. [14] builds a link-node-based micro-
network representation and have successfully applied MARL
on it, which is prospective.

The previous learning on order dispatching and re-
positioning put little concentration on the selection of the map
representation method. In fact, map representation based on
real-world transportation networks has been learned in vehicle
routing problem (VRP) rather sufficiently [35, 36]. Further
exploration on the integration of the map representation
module with fleet management will be productive.

C. Adaptability to emergencies

According our survey, the learning and planning approach
[8, 9, 15], and its variants [14, 21], have been widely used in
fleet management. Based on historical data, the off-line
learning step enables the model to predict the distribution of
demand and supply, therefore capable of arranging the fleets
to fill the gap in advance. The centralized online planning step,
helps the platform to coordinate the actions of agents,
optimize the reward of the whole system.

However, while researchers are trying to improve the
performance of the algorithm, the risks of emergencies are
ignored. The off-line training doesn't extract the causality of
the transition of the supply and demand but directly learns the
state-value on each timestep, viz. The prediction of state-value
is more likely to be a replay of historical tendency and hardly
consider the current situation. To deal with the challenge, [15,
16] redesigned the DRL network and take the current state as
part of the input in the planning step. This shortage may be
fatal when a large difference takes place between the real-
world situation and historical situation, let alone the abrupt of
the emergent incident. How to improve the robustness of the
system from the real-time update part should be learnt in the
future.

Another concern about the adaptability to the emergency
of the system is the “single point of failure” [18]. [17] goes
further on the design of the distributed system, which depends
little on the central control.

Although [14] points that such non-cooperative learning
may harm the system episode reward, the capability for the
vehicle to continually provide a sub-optimal arrangement to
itself when temporarily disconnected to the control center is
of no doubt significant. This backup system may be of
necessity where the connection is not reliable. Considering the
recent development of Internet of Things (IoT) and the
Internet of Vehicles (IoV), the distributed execution could be
practical and prospective.

D. Heterogeneous fleet

To reduce computational complexity, literatures consider
the vehicles and orders as heterogeneous and ignore the
though obvious distinctions between each driver and
costumer.

On one hand, for each driver, they may have their own
destinations like their living places at a certain time, or they
may have certain preferences of routes since some drivers
prefer to take the route that are faster and the others may favor
those routes which are easy to drive on. When doing order
dispatching, those features or preferences of drivers may
influence their degree of satisfaction on the dispatch result. On
the other hand, for costumers, they may also have preferences
or special needs which will greatly influence their riding
experience and thus their degrees of satisfaction also.

The driver's preference has to be stressed when
considering vehicle re-positioning. In real-world practice,
drivers may have their own pattern of seeking customer, for
instance, some drivers may prefer to route around the city
railway station while others may show a special favor for the
shopping centers. Having this specific preference when doing
re-positioning, the system have to make decisions which not
only balance the demand and supply but also satisfy the
driver's preference. There are a lot of papers using the order
reject rate to evaluate their algorithm's advantage, however
not any paper uses the driver reject rate to evaluate whether
their re-position action is disobeyed by the driver and
considered as noneffective which is normally observed in
real-world scenarios.

Finding an approach to bring in the heterogeneous features
of both the driver and consumer into the reinforcement
learning system in fleet management is what future researches
should focus on. Researches have already been conducted on
modeling drivers routing patterns as well as their driving
preferences but are all based on a small scale of drivers and
none was used in practice to help addressing fleet
management problems [37, 38].

V. CONCLUSION

The fleet management problems are increasingly
important in our daily life now. In this paper the fleet
management problems are divided into three parts: order
dispatching, vehicle routing and re-positioning. This paper
mainly focused on reviewing the methods of order dispatching
and re-positioning questions using multi-agent reinforcement
learning. Meanwhile, the basic knowledge of single and multi-
agent reinforcement learning is presented. Various methods
solving the two problems were generally separated to three
categories based on the choice of applying vehicle-based
agent or grid-based agent, along with some extended work of
the former categories. The representative methods are
introduced and explained in this paper. Furthermore, the real-
life applications of multi-agent reinforcement learning are
investigated. The challenges and possible opportunities in
improving fleet management system with multi-agent
reinforcement learning are also discussed.

REFERENCES

[1] Bielli M, Bielli A, Rossi R. Trends in modelsand algorithms for
fleet management. Procedia-Social and Behavioral Sciences.
2011;20:4–18.

[2] Zong Z, Feng T, Xia T, Li Y, et al. Deep Reinforcement Learning for
Demand Driven Services in Logistics and Transportation Systems: A
Survey. arXiv preprint arXiv:210804462. 2021.

[3] Qin Z, Zhu H, Ye J. Reinforcement Learning for Ridesharing: A
Survey; 2021.

[4] Bu¸soniu L, Babuˇska R, De Schutter B. Multi-agent reinforcement
learning: An overview. Innovations in multi-agent systems and
applications-1. 2010:183-221.

[5] Farazi NP, Zou B, Ahamed T, Barua L. Deep reinforcement learning
in transportation research: A review. Transportation Research
Interdisciplinary Perspectives. 2021;11:100425.

[6] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT
press; 2018.

[7] Qin Z, Tang X, Jiao Y, Zhang F, Xu Z, Zhu H, et al. Ride-hailing order
dispatching at DiDi via reinforcement learning. INFORMS Journal on
Applied Analytics. 2020;50(5):272{286.

[8] Xu Z, Li Z, Guan Q, Zhang D, Li Q, Nan J, et al. Large-scale order
dispatch in on-demand ride-hailing platforms: A learning and planning
approach. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining; 2018. p. 905-
913.

[9] Wang Z, Qin Z, Tang X, Ye J, Zhu H. Deep reinforcement learning
with knowledge transfer for online rides order dispatching. In: 2018
IEEE International Conference on Data Mining (ICDM). IEEE; 2018.
p. 617-626.

[10] Zhou M, Jin J, Zhang W, Qin Z, Jiao Y, Wang C, et al. Multi-agent
reinforcement learning for order-dispatching via order-vehicle
distribution matching. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management; 2019. p.
2645-2653.

[11] Yang L, Yu X, Cao J, Liu X, Zhou P. Exploring Deep Reinforcement
Learning for Task Dispatching in Autonomous On-Demand Services.
ACM Transactions on Knowledge Discovery from Data (TKDD).
2021;15(3):1-23.

[12] Zhang L, Hu T, Min Y, Wu G, Zhang J, Feng P, et al. A taxi order
dispatch model based on combinatorial optimization. In: Proceedings
of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining; 2017. p. 2151-2159.

[13] Ke J, Yang H, Zheng H, Chen X, Jia Y, Gong P, et al. Hexagon-based
convolutional neural network for supply-demand forecasting of
ridesourcing services. IEEE Transactions on Intelligent Transportation
Systems. 2018;20(11):4160-4173.

[14] Liang E, Wen K, Lam WH, Sumalee A, Zhong R. An Integrated
Reinforcement Learning and Centralized Programming Approach for
Online Taxi Dispatching. IEEE Transactions on Neural Networks and
Learning Systems. 2021.

[15] Tang X, Qin Z, Zhang F, Wang Z, Xu Z, Ma Y, et al. A deep value-
network based approach for multi-driver order dispatching. In:
Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining; 2019. p. 1780-1790.

[16] Tang X, Zhang F, Qin Z, Wang Y, Shi D, Song B, et al. Value Function
is All You Need: A Unified Learning Framework for Ride Hailing
Platforms. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining; 2021. p. 3605-3615.

[17] Li M, Qin Z, Jiao Y, Yang Y, Wang J, Wang C, et al. Efficient
ridesharing order dispatching with mean field multi-agent
reinforcement learning. In: The World Wide Web Conference; 2019.
p. 983-994.

[18] Lynch GS. Single point of failure: The 10 essential laws of supply
chain risk management. John Wiley and Sons; 2009.

[19] Yang Y, Luo R, Li M, Zhou M, Zhang W, Wang J. Mean Field Multi-
Agent Reinforcement Learning; 2020.

[20] Jin J, Zhou M, Zhang W, Li M, Guo Z, Qin Z, et al. Coride: joint order
dispatching and fleet management for multi-scale ride-hailing
platforms. In: Proceedings of the 28th ACM International Conference
on Information and Knowledge Management; 2019. p. 1983-1992.

[21] Liu C, Chen CX, Chen C. META: A City-Wide Taxi Repositioning
Framework Based on MultiAgent Reinforcement Learning. IEEE
Transactions on Intelligent Transportation Systems. 2021.

[22] Jintao K, Yang H, Ye J, et al. Learning to delayin ride-sourcing
systems: a multi-agent deep reinforcement learning framework. IEEE
Transactions on Knowledge and Data Engineering. 2020.

[23] O’Keeffe K, Anklesaria S, Santi P, Ratti C. Using reinforcement
learning to minimize taxi idle times. Journal of Intelligent
Transportation Systems. 2021:1-16.

[24] Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, et al. Deep multi-view spatial-
temporal network for taxi demand prediction. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 32; 2018.

[25] Xu J, Rahmatizadeh R, B¨ol¨oni L, Turgut D. Real-time prediction of
taxi demand using recurrent neural networks. IEEE Transactions on
Intelligent Transportation Systems. 2017;19(8):2572-2581.

[26] He S, Shin KG. Spatio-temporal capsule-based reinforcement learning
for mobility-on-demand network coordination. In: The World Wide
Web Conference; 2019. p. 2806-2813.

[27] Oda T, Joe-Wong C. MOVI: A model-free approach to dynamic fleet
management. In: IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE; 2018. p. 2708-2716.

[28] Liu Z, Li J, Wu K. Context-Aware Taxi Dispatching at City-Scale
Using Deep Reinforcement Learning. IEEE Transactions on Intelligent
Transportation Systems. 2020.

[29] Lin K, Zhao R, Xu Z, Zhou J. Efficient largescale fleet management
via multi-agent deep reinforcement learning. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining; 2018. p. 1774-1783.

[30] Wen J, Zhao J, Jaillet P. Rebalancing shared mobility-on-demand
systems: A reinforcement learning approach. In: 2017 IEEE 20th
International Conference on Intelligent Transportation Systems
(ITSC). Ieee; 2017. p. 220-225.

[31] Shou Z, Di X, Ye J, Zhu H, Zhang H, Hampshire R. Optimal passenger-
seeking policies on Ehailing platforms using Markov decision process
and imitation learning. Transportation Research Part C: Emerging
Technologies. 2020;111:91-113.

[32] Yang Y, Wang X, Xu Y, Huang Q. Multiagent reinforcement learning-
based taxi predispatching model to balance taxi supply and demand.
Journal of Advanced Transportation. 2020;2020.

[33] Li Y, Zheng Y, Yang Q. Cooperative MultiAgent Reinforcement
Learning in Express System. In: Proceedings of the 29th ACM
International Conference on Information & Knowledge Management;
2020. p. 805-814.

[34] Zhang W, Wang Q, Li J, Xu C. Dynamic Fleet Management With
Rewriting Deep Reinforcement Learning. IEEE Access.
2020;8:143333-143341.

[35] James J, Yu W, Gu J. Online vehicle routing with neural combinatorial
optimization and deep reinforcement learning. IEEE Transactions on
Intelligent Transportation Systems. 2019;20(10):3806-3817.

[36] Garg N, Ranu S. Route recommendations for idle taxi drivers: Find me
the shortest route to a customer! In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining; 2018. p. 1425-1434.

[37] Pan M, Li Y, Zhou X, Liu Z, Song R, Lu H, et al. Dissecting the
learning curve of taxi drivers: A data-driven approach. In: Proceedings
of the 2019 SIAM International Conference on Data Mining. SIAM;
2019. p. 783-791.

[38] Ziebart BD, Maas AL, Dey AK, Bagnell JA. Navigate like a cabbie:
Probabilistic reasoning from observed context-aware behavior. In:
Proceedings of the 10th international conference on Ubiquitous
computing; 2008. p. 322-331.

	I. Introduction
	II. Reinforcement Learning
	A. Single-agent RL
	B. Multi-agent RL

	III. Reinforcement Learning for Fleet Management
	A. Order Dispatching
	1) Multi-agent reinforcement learning challenges
	2) Vehicle-agent
	3) Grid-agent
	4) Order-agent

	B. Vehicle Re-positioning
	1) Prediction
	2) MARL algorithms
	3) Grid-based algorithms
	4) vehicle-based algorithms
	5) Innovative Algorithm

	IV. Challenges and Opportunities
	A. Unifying dispatching and re-positioning
	B. Map representation
	C. Adaptability to emergencies
	D. Heterogeneous fleet

	V. Conclusion
	References

