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ABSTRACT

While Explainable AI (XAI) helps users understand Al decisions,
misalignment in domain knowledge can lead to disagreement. This
inconsistency hinders understanding, and because explanations
are often read-only, users lack the control to improve alignment.
We propose making XAI editable, allowing users to write rules to
improve control and gain deeper understanding through the gener-
ation effect of active learning. We developed CoExplain, leveraging
a neural network for universal representation and symbolic rules
for intuitive reasoning on interpretable attributes. CoExplain ex-
plains the neural network with a faithful proxy decision tree, parses
user-written rules as an equivalent neural network graph, and col-
laboratively optimizes the decision tree. In a user study (N=43),
CoExplain and manually editable XAI improved user understand-
ing and model alignment compared to read-only XAI. CoExplain
was easier to use with fewer edits and less time. This work con-
tributes Editable XAI for bidirectional Al alignment, improving
understanding and control.
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1 INTRODUCTION

Explainable AI (XAI) helps users understand the reasoning behind
Al decisions. However, when the Al is incorrect or incongruent with
a user’s domain knowledge or beliefs, this results in human—-AI
misalignment, which can cause distrust, errors, and extra work
for users to verify or override Al decisions [64, 130]. XAl can also
exacerbate the problem: by presenting explanations that appear
reasonable, it can reinforce automation bias, where users place
undue trust in Al outputs and overlook potential errors [20]. When
explanations are static and read-only, misalignment persists, leaving
users unable to correct errors or incorporate their own knowledge.

We propose Editable XAI and hypothesize that allowing users
to rewrite the rules of Al reasoning can improve alignment. By
allowing users and Al to collaboratively inspect and revise a shared
medium explanation, users can better understand the AI behavior
and identify the misalignment. Beyond improving alignment, the act
of editing explanations engages users in actively producing content
rather than passively consuming it, leveraging the generation effect
from active learning [115, 125]. In this way, editable explanations
promote bi-directional alignment [112, 113]: I) users can adapt Al
reasoning to their domain knowledge, II) while simultaneously
deepening their own understanding of how the Al makes decisions.

To explore this idea, we conducted an elicitation study to under-
stand how users may want to edit or override Al reasoning. From
this study, we identified several design needs for Editable XAI.
First, explanations should be contextualized in a writable format,
such as rules, so that users can directly adjust rather than only read
them. Second, systems should support user-written rules that cap-
ture domain knowledge with user familiar terms, rather than relying
solely on data-driven patterns. Third, Al assistance should provide
automated enhancements to user rules, such as adjusting thresholds
or reorganizing rule topology, to help close knowledge gaps. Finally,
automated edits should be constrained to remain consistent with
user intent and avoid introducing unnecessary complexity. These
findings directly informed the design of our system.

Based on these requirements, we introduce CoExplain, a frame-
work for Editable XAI that supports three modes of interaction:
Read, Write, and Enhance. We use decision tree rules as the inter-
action medium as they are human-interpretable and human-editable
while compatible with machine learning models. We use neural
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Figure 1: The three interaction modes for Editable XAI. (1)
Read: users inspect explanations generated by the AL (2)
Write: users modify explanations to guide the Al, and (3)
Enhance: users and the Al collaboratively refine explanations.
Creating a bidirectional alignment between the user and Al

networks as the underlying Al model to exploit its expressivity and
flexible training with gradient descent. For Read, CoExplain distills
a neural network into a decision tree to provide faithful and acces-
sible explanations of model decisions. For Write, user-authored
rules are parsed into an equivalent neural network, enabling the
system to incorporate domain knowledge while maintaining train-
ability. For Enhance, CoExplain augments user-written rules in
two ways: conservatively refining threshold values to adjust de-
cision boundaries, and more aggressively reorganizing the tree’s
topology to improve predictive performance. These actions are
linked through neurosymbolic approaches that maintain equiva-
lence between decision trees and neural networks via distillation,
parsing, backpropagation, and regularization, thereby enabling bi-
directional collaboration between humans and AL

We evaluated CoExplain in a user study with 43 participants,
compared it with Read-only XAl and manually Editable XAI without
Al enhancements. Both editable techniques improved understand-
ing and alignment compared to read-only explanations. Qualitative
findings showed that writing rules helped users align Al reasoning
with their own knowledge and deepened their understanding on
model behavior, while Al enhancements were valued for refining
thresholds and restructuring rules under user control. Quantitative
results showed that both Editable and CoExplain improved under-
standing, with CoExplain striking a balance between maintaining
alignment with users’ initial knowledge and achieving near-optimal
model performance. CoExplain also reduced editing effort by pro-
viding on-demand enhancements, saving users time on refining
thresholds and topology. Participants generally perceived it as eas-
ier to use and appreciated its collaborative nature.

In summary, this paper makes two contributions:

1) Insights on how users edit explanatory rules, both independently
and collaboratively with AI, highlighting needs for Editable
XAI, Al-guided enhancements, and constrained automation.

2) CoExplain, a neurosymbolic framework and interactive XAI
tool that supports read, write, and enhance rule-based explana-
tion, enabling bi-directional human-AlI alignment.

Our evaluations showed that editable explanations, CoExplain
in particular, foster more effective and efficient human-AI align-
ment than static, read-only explanations. We discuss the scope,
limitations, and generalization of Editable XAI, and outline future
directions toward effective human-AI collaboration and alignment.
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2 RELATED WORK

We discuss related work on how explainable Al is mostly used for
reading only, interactive machine learning methods for human-
Al alignment, neurosymbolic methods to interface semantic rules
with expressive Al models and end-user development to increase
access and control of smart systems. Prior works in these areas are
mostly one directional in solving the misalignment problem, while
Editable XAI approach it in a bi-directional way by deepening both
the user’s understanding of Al and the Al’s alignment with user.

2.1 Usage of Explainable Artificial Intelligence

Explainable AI (XAI) has been a key research area to increase trans-
parency in machine learning systems. Most existing approaches
focus on generating post-hoc justifications for model outputs, such
as saliency maps [1, 2, 55, 111] or gradient-based attributions [4, 5,
118], primarily targeting technical audiences. These methods of-
ten leave non-expert users underserved, particularly in high-stake
domains where understanding both the structure and reasoning
of Al systems is crucial [75, 129]. Such post-hoc explanations are
one-way communications that show users what the model did,
rather than inviting them to question or modify. Even seemingly
user-friendly formats like natural language rationalization [35] or
example-based explanations [11, 23, 66, 68] limit interactivity and
rarely expose the underlying logical structure of the model.
Recent work emphasizes the importance of interactive explana-
tions, where users are not just recipients of reasoning but active
participants in shaping it [79, 116]. By allowing users to modify
explanations, systems can support deeper understanding [49, 78],
however, these works treat user input as optional or post-hoc, with-
out letting user input affect the AI's reasoning process. On the other
hand, Editable XAI includes users as active collaborators with
the Al system, rather than as passive receivers of the static expla-
nations, treating user input as a core part of model reasoning and
refinement. By allowing users to directly inspect and modify the
AT’s reasoning with decision tree explanations [12, 26], CoExplain
creates a bi-directional alignment between the user and the AL

2.2 Interactive Machine Learning for
Human-AI Alignment

While XAI improves transparency, aligning Al systems with user
expectations often requires interactive interventions rather than
passive explanations. Interactive Machine Learning (IML) places
users in the loop to adjust models, leveraging domain knowledge
and improving alignment under scarce or noisy data [36, 98].

Most prior IML systems focus on data-level feedback, such as
labeling instances [10, 22], modifying features [17, 126], or curating
datasets [9, 102]. [114] explored using gradient to correct specific
mistakes, but cannot inspect and correct the model’s reasoning as
a whole. Such instance-based corrections are local, requiring users
to inspect examples individually and making global misalignment
patterns difficult to detect.

In contrast, model-level interactions, where users directly
shape a model’s structure or reasoning logic, remain underex-
plored [98]. Recent work using rules or decision trees offers in-
terpretable interfaces [31, 49, 72, 73, 102], but these are typically
post-hoc aids rather than manipulable model components.
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Editable XAI advances this space by treating explanations as
both interpretable and editable substrates. Users can inspect
and revise rules that govern model-wide behavior, creating a
collaborative, continuous feedback loop. This enables global align-
ment, correcting reasoning patterns rather than isolated instances,
making explanations not only clarify the model’s logic but also
serve as a manipulable substrate for alignment.

2.3 Integrating Human Knowledge in Neural
Networks with Neuro-Symbolic Learning

Neural-symbolic learning bridges human reasoning and sta-
tistical learning by integrating symbolic rules into neural mod-
els [34, 40]. These hybrid approaches enhance interpretability and
allow networks to incorporate logical constraints, aligning model
behavior more closely with human expectations.

Prior work typically embeds rules through formal logic en-
codings [7, 29, 106, 127] or constraint-based objectives, such as
differentiable logic or regularization [59, 82]. While effective, these
methods demand technical expertise to specify rules and integrate
them into training pipelines, limiting access for domain experts or
end-users whose knowledge is critical for meaningful alignment.

This gap highlights the need for user-accessible neuro-symbolic
methods that allow intuitive knowledge input and iterative
refinement. By enabling symbolic rules to be directly editable and
interpretable, Editable XAI supports collaborative human—-AlI rea-
soning, allowing users to guide model behavior without requiring
technical expertise. This shifts Neural-symbolic methods from tech-
nically encoded rules to human-centered, editable knowledge.

2.4 End-User Development for Editable Systems

Many real-world applications involve non-technical users who
possess domain knowledge but lack effective means to integrate it
into Al systems. End-User Development (EUD) addresses this gap
by enabling users to modify system behavior without programming
expertise [37, 85]. Rule-based interfaces are common in EUD as
they provide a transparent representation of user intent [8, 32].
Prior work demonstrates EUD applications in personalizing smart
environments, IoT behaviors, and adaptive systems [44, 48, 56].

However, these efforts generally focus on simple if-then rules,
which limits their applicability to complex decision structures or
integration with Al reasoning. Extending EUD to support richer
rule authoring and editing would allow end-users to contribute
domain knowledge in a way that directly influences model be-
havior, while maintaining accessibility and interpretability. This
perspective positions EUD not just as a personalization tool, but as
a potential bridge for human-guided, editable Al systems.

3 ELICITATION USER STUDY

Despite advancements in tools for rule editing, end-user program-
ming, and interactive machine learning [31, 44, 49], a significant
gap exists in the support for editable Al explanations. To address
this, we developed a basic rule editor tool informed by Tree Edit
Distance (TED, Zhang and Shasha [128]) to include tree editing
operations for inserting, deleting, and updating rules. We then used
this tool as a design probe in a user study to elicit user needs for
automatic and Al-supported editing of XAI explanations.
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3.1 Method

3.1.1  Probe apparatus and user task. This study was conducted
using a basic editing tool we developed with an attribute list where
users can select the attributes to use and a canvas where they
can edit their rule with drag and drop as well as text input. The
participants were asked to use this tool to create and edit a rule
that they can understand and agree with, while trying to increase
the rule’s accuracy.

3.1.2  Participants. We recruited 14 participants from a local uni-
versity for the elicitation study. It was conducted over Zoom for 60
minutes. Participants were compensated $16 USD in local currency.
They were genders 10 females and 4 males, ages 20 to 29 years
old (M = 22.3, SD = 2.3) from 10 different discipline majors (3 in
Computer Science and 3 in Business, and 1 for each of Chemistry,
Medicine, Political Science).

3.1.3  Study procedure. The overall study consisted of two parts:
i) editing stage where users were asked to create and edit a rule
on their own to understand their interaction behavior using rules,
ii) forward simulation stage to estimate their understanding of an
Al model trained using their rules. In this section we focus only
on the editing stage while the results from the forward simulation
were collected and analysed in Section 6. The participants were
shown 3 scenarios in random order: Income Prediction, House Price
Prediction and Heart Disease Prediction. They built the rule and
did the forward simulation for each of the scenarios.

During the editing stage, for each of the scenarios, they were
given a guideline rule as background knowledge of the scenario, we
used the same dataset and preparation procedure as described in
Section 6. An accuracy indicator was available to them while they
perform the editing. The participants were asked to think aloud to
articulate their rationale behind their editing and to describe any
difficulties they have encountered as well as their need of assistance.

3.2 Findings

All 14 participants successfully created and edited their rules for
all 3 scenarios, we conducted a thematic analysis on participant
behaviors and report key findings.

3.2.1 Preference for human-written rules over Al learned rules. Al-
though the guideline rules achieved higher accuracy, most partic-
ipants preferred to create and edit rules that reflected their own
logic and domain knowledge. They valued explanations that “made
sense” to them over rules that merely optimized prediction accuracy.

For instance, E5 reported that she “actually just followed the
guideline rule because I think it makes sense,” but clarified that this
was only because the rule’s logic aligned with her reasoning: “the
size of the living area bigger than [a threshold] means higher value,
and these also correspond with the grade. If it’s older but in good
condition, then it’s high [price].” In contrast, many others deliber-
ately diverged from the guideline rules. E2 emphasized that logical
consistency mattered more than accuracy, drawing on her own real-
life knowledge: I started off with a high grade. And then I thought,
what people want is a bigger living room... even if the living room is
smaller, and the grade is smaller, more number of bedrooms can give
high price.” She further explained, “the more I focused on accuracy,
like, the less I used logic. If I only focused on that, I might, like, come
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up with illogical choices.” Similarly, E3 rejected the guideline rules
outright, noting, “I’'m following my thoughts. Because I think looking
at the guideline rules, to me, it didn’t really... make sense.”

Together, these accounts highlight that participants wanted the
freedom to use rules that reflected their reasoning, even if these
rules were less accurate. The ability to create and edit rules empow-
ered them to maintain ownership of the decision logic, rather than
feeling forced to adopt explanations they disagreed with.

3.2.2 Capped performance despite iterative edits. During the for-
ward simulation stage, participants were allowed to revise their
rules after seeing real instances and labels, and we logged their
interactions for analysis. Most participants engaged in multiple
rounds of editing, gradually revising their rules in search of im-
provement. For example, E2 described a step-by-step process of
modifying thresholds and adding features until reaching a final
model: T changed these 3 to... this from 4 to 3, and this from 3 to 2.
And then I added this. The age, because I felt like high and low weren’t
doing, like, enough.” Similarly, E9 explained that he “modified [the
framework] based on the provided real labels because I noticed factors
like house age and living area were not initially considered. I gradually
revised the branches to improve it.” Despite such efforts, participants
often struggled to achieve satisfactory accuracy. Iterative editing
was described as tedious, and some resorted to drastic changes
after several rounds of refinement. For instance, E8 abandoned her
original rules after four rounds, stating that she “wants to try out a
different set of rule[s].” Likewise, E7 and E14 restructured their rules
late in the process when incremental edits failed to improve out-
comes. These behaviors suggest that while iterative refinement is a
natural strategy, it is insufficient without system support. Users re-
quire not only editing flexibility, but also suggestions and feedback
tailored to their rules to sustain productive refinement.

3.2.3 Difficulty in determining threshold values and need for external
advice. One of the most frequently requested forms of assistance
was help with selecting appropriate threshold values for attributes.
Participants often experimented with different cutoffs around an
initial guess to see if accuracy improved. They sought guidance
on ranges that were logical or grounded in domain knowledge,
while still wanting to preserve the topology of their own rules. For
instance, E1 remarked, ‘T need to see [from the guideline], what range
of values are logical,” emphasizing the difficulty of choosing cutoffs
without reference points. E7 similarly questioned what particular
thresholds to be used, noting, ‘T heard that you don’t need to have a
degree in order to get a high-paying job, but I don’t know what’s the
cutoff for the age also.” Likewise, E11 expressed a desire for external
assistance, suggesting: “some help can tell you, for example, in the
heart case, what is the normal resting [blood pressure] rate.”

These reflections underscore a recurring challenge: participants
valued ownership of their rules but lacked confidence in setting pre-
cise numerical thresholds. This points to a clear design implication:
the systems should provide threshold suggestions around the users’
initial guess, while being contextualized by domain knowledge or
data distributions, preserving the topology defined by users.

3.24 Need for reorganization suggestions while preserving some
priors. Participants also recognized that their rules could benefit
from topological improvements. Rather than discarding their work,
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they expressed interest in revisions: refining specific branches or
adding detail while preserving the core of their original creation.
For example, E3 reflected on his rule as ‘T think it’s incomplete.”,
and would like to see where and how can improvements be made.
Similarly, E5 struggled with how to make certain improvements,
admitting, “I’m not so sure about this [heart disease rule], I don’t
know exactly where to improve,” and suggested that “maybe the
second resting blood pressure [needs improvement], but I don’t know
how.” E10 desired greater granularity on his rule, noting, T think my
criteria could be more detailed, like maybe having more branches.”

These comments suggest that while participants valued the in-
terpretability of their own topology, they lacked confidence in
knowing where or how to revise them. This highlights the need
for system support that can propose structural refinements, while
maintaining alignment with users’ original rule.

3.3 Design Guidelines

Based on these findings, we propose design guidelines for Editable
XALI to facilitate human-AI alignment:

1) Contextualize explanations in a writable format such as
rules so that users can contribute to adjusting the explanations
rather than just read them.

2) Support user-written rules by explaining in terms of rules
established in the domain, or defined by users as they need,
instead of purely learned from data.

3) Provide automated enhancements of user-written rules to
alleviate knowledge deficits of users, and augment their reason-
ing. The system can recommend adjustments to rule thresholds
(parameters), or even reorganize the rule topology (decision tree
structure) to significantly improve the explanation accuracy.

4) Constrain enhancements to preserve alignment with user-
driven rules and limit explanation complexity.

4 TECHNICAL APPROACH

To satisfy the design guidelines, we introduce CoExplain for col-
laborative, editable explainable AI (XAI). We model predictions
using neural networks to leverage its representational power as
universal function approximators [109], and gradient descent meth-
ods for model training. We explain the model using decision trees to
leverage its intuitive representation of semantic relationships [90].
As illustrated in Fig. 2, CoExplain enables users to read explana-
tions through distillation (Section 4.1), write explanations through
parsing (Section 4.2), and the Al can enhance explanations through
training with backpropagation and regularization (Section 4.3).

4.1 Distillation: Neural Network Model to
Decision Tree Rule Explanation

Model agnostic explanations, such as LIME [105], are commonly
used to explain black box AI models like neural networks. These
can be done for local explanations with instances near a target, or
global explanations for the overall model decisions. Generally, this
approach is model distillation, most commonly used to condense
large models (e.g., student-teacher models [47, 124]), but can also
be used for explanation since distilled models are simpler. For this
work, we focus on explaining neural networks with a global decision
tree using distillation [15, 28, 71, 99, 110].
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CoExplain

Distillation Parsing

Training
+ Distillation
+ Regularization

Figure 2: Overview of CoExplain’s three interaction modes
and their underlying mechanisms. Read: explanations are
distilled from the neural network M into a decision tree T,
using the input x and network prediction  to make sure tree
prediction § aligns with M. Write: user-authored rules T’ are
transformed into a neural network M through a parser P.
Enhance: user collaborates with Al edits on the thresholds
and topology. Al refines the rules through training with reg-
ularization, aligning predictions j with both user-defined
rules’ prediction §’ and data-driven adjustments with y, the
topology of the explanation T is aligned with T’ using a proxy
model F; mapping the network parameters 0 to their Tree
Edit Distance d calculated by D.

Consider the Al model (neural network) to be explained M, and
explainer XAI model (decision tree) T. Predictor model M is trained
on instances x with ground truth label y, and predicts label 7, i.e.,
7 = M(x). Instead of training explainer model T on ground truth
labels, we train it on the prediction label § to predict explanation
label 7, i.e., j = T(x). We performed hyperparameter tuning of the
tree depth to obtain the most faithful explainer model T to predictor
model M. The neural network M is trained via backpropagation,
while the decision tree T is trained via CART [89].

4.2 Parsing: Decision Tree Rule Explanation to
Neural Network Model

While the distillation focuses on explaining a pre-existing neural
network, parsing starts with a pre-existing decision tree written by
a user. Moreover, while distillation is model agnostic and approxi-
mate, parsing is heuristic and can exactly convert a tree into a neural
network, exploiting the property that both are graph structures.
We build on prior work in tree-to-network initialization [60] and
neural-symbolic alignment [82] to parse a user-defined decision
tree into a topologically-equivalent neural network. Note that while
both trees and neural networks have graph structures, their aspects
do not represent the same concepts. Table 1 compares key aspects
between these models. Next, we describe how to parse aspects of
the decision tree (decision nodes, trace conjoined branches, disjoint
traces), and how to ensure extensibility of the tree-based neural
network. See Fig. 3 for an illustrated example of parsing.
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4.2.1 Decision Nodes and Consequent Branches. For a binary de-
cision tree, each decision node results in a True (T) or False (F)
outcome. We model these in the first layer of the neural network,
where each outcome is associated with a neuron, and each decision
node has a pair of neurons. So, k decision nodes results in a first
NN layer with 2k neurons.

From Fig. 3, consider the blue decision node with test x; > ;.
The test is True when x; — 77 > 0 and False when —(x1 — 77) >
0. These results can be represented in neurons as a;; = I(x; —
11) = I((=1,+1) - (r1,x1)) and a1z = I(=(x1 — 1)) = I((+1,-1) -
(71, x1)), respectively; where I(P) is the indicator function which
is 1 when P is true and 0 otherwise. Similarly, the green decision
node xz > 77 is represented by neurons a3 = I((—1,+1) - (71, x1))
and aj4 = I((+1,-1) - (71, x1)). Represented in parallel, in NN layer
1 and subsituting I with a differentiable smooth sigmoid activation
function (o), both decision nodes are:

ay =0'(W1Tx+b1),

ar +1 -7

aiz| - -1 (xl) + +11 (1
as +1 | \x2 - ||

aiq -1 +17

with input x, weights Wi, and biases b;.

4.2.2  Conjunction along a Trace. Although represented together in
a; (Eq. 5), each branch of each decision node is treated separately.
To represent traversing down the tree through multiple decision
nodes, we need to encode logical conjunction (AND A). We do so
with Lukasiewicz conjunction to handle continuous values:

PAQ=max(0,p+q-1), (2

where p = 1 when P is True and 0 otherwise, and same for g with Q.
We encode this operation in the second NN layer by representing
p+ g —1ina computational graph with ReLU activation function
since ReLU(x) = max(0, x). As an example, the conjunction (x; >
71) A (x2 > 12) in the second depth of the decision tree in Fig. 3
is represented by neuron az3 = ReLU(aj2 + aj3 — 1). All decision
branches are represented in the NN layer 2 as:

az = ReLU (W, a1 +by),

a21 1 ®3)
a

azs | = ReLU 11 alz +| -1,
13

a4 1 1 -1
alq

with input a1, weights W», and biases by.

For DT traces that terminate at the first or earlier tree depths,
the NN propagations pass through the layer without modification
(i.e., weights = 1 and biases = 0). For example, decision branch
x1 2 11 [  has the NN propagation g = 1- a1 + 0.

4.2.3 Disjunction of Traces with Same Leaf Node Predictions. We
represent multiclass classification using one-hot encoding, where
each neuron in the NN output layer is a separate class. When
multiple traces in the decision tree share the same predictions in
their leaf nodes, this indicates alternative antecedents for the same
consequent, which is a logical disjunction (OR V). We encode this



CHI *26, April 13-17, 2026, Barcelona, Spain

Chen, Bai, Fang, and Lim

Table 1: Comparison of graph structures between a decision tree and its topologically equivalent neural network.

Aspect Decision Tree (DT) Neural Network (NN)

Node Decision Node representing a test on a single attribute Neuron representing a unit that receives weighted inputs
against a threshold. and activates an output.
Leaf Node: Represents the predicted label from the
preceding branch outcome (e.g., x1 > 5).

Edge Branch representing the binary prediction outcome, Connection representing the weight of the prior input
connecting to the next decision test. (neuron).

Path Trace through multiple decision nodes represents the Propagation of multiple computed operations from input
conjunction (AND) of tests. If multiple traces have the to output.
same predicted label in their leaf nodes, then the traces can
be combined as a disjunction (OR).

Level Depth of a node corresponds to the number of attribute Layer: For the parsed NN, the first layer represents

tests required to reach it.

Computation Symbolic: Each node performs a symbolic test (e.g.,

X2 > 8).

straight (linear) decision boundaries, and subsequent layers
are weighted, piecewise combinations of these boundaries.
General NN learn nonlinear decision boundaries or more
separable feature spaces.

Continuous: Each neuron performs a nonlinear operation
(weighted sum and activation function).

numerically with Lukasiewicz disjunction:

PLV Py Ve =min(l, ) py), )
teTe

where t € T is the tth trace that predicts class ¢, and p; = 1
when P is True and 0 otherwise. We encode this in the output layer
by summing relevant activations from the penultimate layer with
Clipped ReLU (cReLU) activation function: cReLU(x) = min(1, x)
for clip at 1 and 0 < x < 1. All decision traces are represented in
the output layer as:

§= ReLU (Wy az +by ),

N azi (5)
(ﬁyIII) = cReLU (1 1) ass +() R

azq
with input a;, weights Wy, and biases by,.

4.24 Model Capacity and Zero Padding. The aforementioned meth-
ods describe how to set parameter values (weights and biases) in
the neural network, but do not specify the model capacity needed
to represent the parsed tree or future extensions. At minimum, i)
the number of neurons in each NN layer is twice the number of DT
decision nodes, and ii) the number of NN layers is determined by
the depth of the DT. The number of neurons in NN output layer is
the number of prediction classes.

However, to support extensibility whereby the model can be re-
trained to be more expressive and accurate, we need to support more
relationships and decision boundaries. We do so by zero padding
with more neurons per layer (weights = 0, bias = 0), and more layers
with pass through. Section 4.3 describes how training to update
these additional parameters can optimize the model further.

a) Decision Tree b) Topologically-Equivalent Neural Network

Figure 3: Transforming a decision tree into a topologically
equivalent neural network through a parser P. (a) A decision
tree with two internal nodes, each testing a feature threshold.
(b) The corresponding neural network, where each tree node
is mapped to a pair of neurons in the first hidden layer with
biases +7; to encode the threshold test. Subsequent layers mir-
ror the decision paths of the tree: connections are preserved
with weights of 1, while neuron biases are set according to
the logical relationships. Colored connections trace decision
paths, and the output layer aggregates signals to reproduce
the tree’s leaf predictions.

4.3 Training: Optimizing Model for
Performance and Alignment

User-created decision trees provide an interpretable starting point,
but their predictive performance is often limited by the greedy!,
local optimization used during construction. To manage user sense
of control and moderate edits, CoExplain supports conservative and
disruptive update methods: Threshold Enhancement and Topology
Enhancement. These change the underlying neural network model

!Due to CART-based learning with information gain.
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a) Thresholds Update only b) Topology Update
W, ag W; a, w, ag W, a, Wy, a
+Aby +AW, +Ab, +AW, +Ab, +AW, +Ab,,

Figure 4: Two types of enhancement from CoExplain, a)
Threshold Update, only the threshold is updated, while keep-
ing the topology still. b) Topology Update, both the thresh-
olds and connections are trained, we utilize additional neu-
rons and connections to support decision tree extension.
Backpropagation and parameter update are marked as red.

slightly or by a lot and explain with a new decision tree as updated.
Threshold Enhancement will retain the same decision tree structure
(topology), but may change the threshold value (e.g., x; > 5 may
become x; > 5.5). Topology Enhancement will learn complex, non-
linear, multivariate relationships, resulting in a change in topology,
such as adding and rearranging decision nodes, and using addi-
tional attributes. To limit the changes, constraints can be applied.
Next, we describe how CoExplain enhance through model training,
distills explanations for validation, and aligns to constraints via
regularization (see Fig. 2 Enhancement for architecture).

4.3.1 Training. We retrain the neural network in the standard
approach using supervised learning and gradient descent via back-
propagation on a training dataset using cross-entropy loss between
the model’s prediction ¢ and ground truth y, i.e., L4.ta (3, y). En-
hancements for thresholds and topology are handled differently.

Threshold Enhancement: To enhance only the DT thresholds,
we freeze all parameters except for the bias terms in the NN layer 1
that contain the DT thresholds (see Fig. 4a). For example, b1 = +11
can be updated with Ar;. Moreover, a user may wish to lock in
an edited threshold. To preserve this user-defined threshold, and
ensure local consistency, we freeze the bias terms of its two corre-
sponding neurons in the first layer. For example, locking the node
x1 > 71 in Fig. 3a will freeze the bias terms in the top two neurons
of layer a; in Fig.4a.

Topology Enhancement: To further enhance the DT toplogy,
we unfreeze all layers and parameters and allow full weight and
bias updates (see Fig. 4b). This includes updating the zero-padded
neurons. Moreover, instead of letting CoExplain fully alter the full
decision tree, the user may want only some rules to be enhanced
and others restricted. To preserve the restricted rules, we selectively
freeze those rules as we freeze threshold neuron biases. However,
this may be overly restrictive, leading to low accuracy. Instead, to
discourage the AI from changing restricted rules, we increase their
weight in the Tree Edit Distance regularization, so that changes to
restricted rules have a higher penalty than changes to other rules.
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4.3.2 Distillation. To generate the decision tree explanation T of
the retrained model M, we use the same distillation method de-
scribed in Section 4.1. However, we do this iteratively at each train-
ing batch as an intermediate check on the performance and topology
of the explainer model.

4.3.3 Regularization. Although standard supervised learning fo-
cuses on model performance, CoExplain also supports alignment
to user-defined rules. This is accomplished by referring to the
user’s written decision tree T, and using self-supervised learning
to ensure that the distilled tree explanation T has similar behavior
(7 ~ §’) and topology design. Fig. 2 We regularize behavior with
cross-entropy loss between the DT explainer’s prediction 7 and
user DT prediction 7, i.e., Lpehavior (7> §’)-

To determine the difference in topology between T and T’, we
calculate the Tree Edit Distance (TED) d which counts the number
of edit operations (insert, delete, update) needed to change from
one tree to the other. Specifically, we used the ZSS algorithm [128]
implemented in Python. Since this distillation to obtain T from
M is external to the neural network, we cannot use T directly for
training with gradient descent. Instead, we trained a proxy model
F,; that uses the parameters 6 in M as input to predict the TED
distance d. Hence, M is a multitask model to predict (g, dA) and it
updates its parameters to optimize for both tasks. We regularize
topology with MSE loss Ltopology(d: d).

In summary, to align the model to training data and user-defined
rules we have multiple loss terms:

L = Laata(0.9) + M Lehavior (I, ) + At Liopology (d.d)  (6)

where Ay, and A; are hyperparameters that we let users control as
similarity settings.

4.4 Implementation Details

We implemented the decision tree components using scikit-learn,
using CART [16] as tree learner. The neural network components
were implemented in PyTorch and optimized with Adam (learning
rate 1 X 1072). All experiments were conducted on a workstation
equipped with an NVIDIA H100 PCIe GPU (81,559 MiB memory)
and an AMD EPYC 9654 96-core processor.

5 INTERFACE DESIGN

Fig. 5 shows the user interface for the CoExplain rule explanation
editor. The interface has a key component for reading and editing
rules, complemented by panels that display dataset attributes, model
performance, and Al enhancement.

5.1 Data Attributes

The attribute list (Fig. 5a) lists available dataset features. Both user
and the AT use attributes from this list when editing.

5.2 Explanation Rules Canvas

The core component is the rules canvas (Fig. 5b), where users read
and edit the Al explanation as rules represented in a decision tree.
Each rule is visualized as a graphical flowchart: nodes denote deci-
sion antecedents, while edges represent true (green, top) or false
(red, bottom) consequents. We considered presenting the rules in
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Figure 5: Interface of CoExplain. a) Data attributes. b) User’s explanation rules canvas. c) User rule performance metrics. d)
Enhancement actions. e) Al-enhanced explanation rules canvas. f) Enhancement constraints and edit history. g) Enhanced rule

performance metrics. h) Simulation on test dataset.

programming syntax, a format often used in end-user development.
However, pilot users found the flowchart representation more intu-
itive. We abstract away the underlying neural network implementa-
tion. In the subsequent user study, participants did not request such
details; the one technical participant who inquired was surprised
to learn about the relationship between his rules and the neural
network, but expressed no need for further inspection.

5.3 Model Performance Metrics

Performance metrics are displayed below each tree (Fig. 5¢ and
g). These include accuracy on the training set and the number of
correctly predicted cases, allowing users to compare their current
tree with the Al-enhanced alternative.

5.4 Enhancement Aids

To support the user with CoExplain enhancements, the interface
displays a parallel Al-edited rule canvas (Fig. 5e). Users can choose
to accept the entire Al editing or selectively incorporate parts that
they agree with.

5.4.1 Enhancement Actions. Enhancement actions are accessed
via a main button with a dropdown (Fig. 5d). Two sub-actions are
available: 1) Threshold Parameters (Value) Enhancement, and 2)
Topology (Flowchart) Enhancement.

5.4.2  Enhancement Constraints. Users can regulate how the AI
proposes changes via two similarity sliders (Fig. 5f). Prediction Sim-
ilarity controls how closely the enhanced tree should match the
current tree’s predictions on the test dataset. Structure Similarity
controls how similar the enhanced topology should remain to the
user’s current tree. Together, these values determine the hyperpa-
rameters of the regularization terms in Eq. 6.

5.4.3 Edit Operations History. The interface records a complete
edit history performed by the Al (Fig. 5f), showing insert, update,

and remove operations. This allows users to track how the enhanced
tree diverges from the original one.

5.5 Simulation on Test Dataset

Finally, the simulation button (Fig. 5h) lets users test their tree on
an explicit test dataset.

6 EVALUATION

We conducted a user study to evaluate the degree of alignment and
interpretability of our proposed editable explanation compared with
Read-only explanations and manual editing variations. Our method
and its variations were tested on three scenarios with real-world
datasets, qualitative and quantitative analysis were conducted on
the collected data.

6.1 Method

We describe the method of our experiment, including the exper-
iment design, application tasks, background knowledge context,
experiment procedure, and recruited participants.

6.1.1 Experiment Design. We primarily compare three XAI Types—
variants of the explainable Al interface with different explanation
capabilities:

o Read-only shows a global explanation of the Al model as a deci-
sion tree, which the user can only Read and not modify, examples
of Read-only explanation rules can be found in Appendix A.5.
Editable represents a non-collaborative setting, where partic-
ipants Write and edit their rules without Al assistance. They
are provided with an accuracy indicator of their rules, consistent
with the one used in Section 3.

o CoExplain allows the participant to collaborate with the Al to co-
edit the explanatory rules of the model. In addition to Read and
Write facilities, the participant can ask CoExplain to Enhance
the explained rules to increase performance on a training dataset.
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The experiment design comprises XAI Type as the primary
independent variable (IV), decision with or without XAI (w/ XAI)
as a secondary IV, and application Dataset as a random variable
(RV). We presented each XAI Type between-subjects to avoid the
learning effect from prior exposure to different explanation features,
and misattributing opinions to wrong systems. To measure partici-
pant understanding, we ask participants to estimate the Al decision
(measures described in Section 6.1.2, procedure described in Sec-
tion 6.1.5) without then with XAI, sequentially to avoid the learning
effect of being shown more information first. For generality, we
also varied the application task for which the participant uses the
XAI UL This was presented within-subjects in random order (coun-
terbalanced for three applications) to allow repeated measures of
different applications per participant to reduce individual variance.

6.1.2 Measures. We measured objective metrics of user under-
standing (U), Al performance (P), Al alignment (A), engagement
(E), and subjective perceived ratings (Q):

U1) User-AlI Faithfulness of whether the participants label was
the same to the Al prediction label (1 if same, 0 if different).
This indicates if they can correctly anticipate the AI's decision,
as user understanding of the Al

P2) Al Accuracy (in Pre-trained Distribution) of how well the
final AI model (if edited) performs on a test set from the Pre-
trained distribution. This indicates if the Al performs well in
its original training domain.

A3) Al Accuracy (in Guideline Distribution) of how well the
final AI model (if edited) performs on a test set the target
Guideline distribution. This indicates if the Al is aligned to
target domain as desired by the user.

A4) Distance between XAI and Guideline Rules of how similar
are the Guideline Rules and the distilled Decision Tree expla-
nation of the final Al model. We computed distance using the
Tree Edit Distance (TED) [128]. This indicates if the XAI is
aligned to target guidelines as desired by the user.

E5) # Edit Operations indicating how many changes the partici-
pant made to the XAI rules.

E6) # Edit Iterations indicating how many iterations the partici-
pant went through before finalizing the Al

E7) Editing Time indicating how long all editing took. We log
transformed Editing Time due to the long tail of slower par-
ticipants, to make the response better satisfy the normality
assumption for statistical analysis.

R7) Perceived Ratings along a 7-pt Likert scale (-3 Strongly
Disagree to +3 Strongly Agree) on the participant perceptions
regarding:

o Understanding of AI Rules (decision tree)

Understanding of Al Decisions (predictions)

Ease of Use to Edit XAI (Editable XAI and CoExplain)

Ease of Use of CoExplain Enhancement

Alignment of CoExplain Enhancement

6.1.3 Application Tasks. We selected three application tasks and
their dataset for evaluation: Adult Income [38], House Price Prediction
from the "House Sales in King County, USA" dataset [50], and Heart
Disease from the UCI Machine Learning Repository [63]. The Adult
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Figure 6: Guideline rule for Adult Income, green dot indicates
true branch, red indicates false branch.

Income task has been widely used as a testbed for human-AI collab-
orative decision-making [43, 51, 91], while the other two datasets
follow prior work by Bo et al. [13]. The datasets vary in domain
knowledge requirements: the Adult Income and House Price tasks
rely on general knowledge and are therefore more accessible to
lay participants, while the Heart Disease task requires professional
training beyond commonsense. To balance complexity and usability
for the participants [13, 43, 91], we selected a small set of features:
5 for Adult Income (Age, Education, Marital status, Investment gain,
Weekly hours), 5 for House Price (Bedrooms, Bathrooms, Living area,
Grade, Age), and 4 for Heart Disease (Age, Resting blood pressure,
Cholesterol, Max heart rate). We partition each application task’s
data into two distributions: a guideline distribution used to provide
background knowledge to participants, and a pre-trained distribu-
tion that participants haven’t been trained on while it’s used to
train the Al This creates a controlled misalignment between the
human and Al as discussed in Appendix A.1.

6.1.4 Background Knowledge: Guideline Rules. For each application
task, we provide participants with a guideline rule as the starting
point for constructing their rules. This guideline rule serves as a
controlled background knowledge and is based on the guideline
distribution. The rules are obtained by training a neural network
on the guideline distribution for five iterations to ensure fairness
with the Read-only, which adopt the same setting. Afterward, the
distillation method described in Section 4.1 is applied to extract
decision-tree rules from the trained network. Fig 6 illustrates a
guideline rule from the Adult Income Prediction Task. The guideline
rules for the other tasks are provided in Appendix A.7.

6.1.5 Procedure. Each participant went through the following:

1) Introduction (5 min). Participants were briefed on the research
background, motivation, and study protocol. Informed consent
was obtained to record their interactions and screen-sharing for
analysis, the University ethics review board approved human-
subjects research and they approved this project.

2) Tutorial and Screening (5 min). Participants received an intro-
duction to decision rules and the Al system functions, followed
by a short screening task to ensure comprehension.

3) Main Session (50 min). Participants completed three scenarios
in random order. For each scenario:

a) Introduction to the attribute definitions and guideline rules
for the scenario.
b) Forward simulation across 20 case trials, consisting of:
i) Rule editing on the explanation (Editable, CoExplain only).
ii) Estimation of the AT’s prediction without explanation.
iii) Estimation of the AT’s prediction with explanation.
iv) Observation of the Al’s prediction and ground-truth label.
c) Perceived ratings and a short interview.



CHI *26, April 13-17, 2026, Barcelona, Spain

4) Demographics, Debrief, and Compensation. Participants com-
pleted a demographics questionnaire, were debriefed of their
performance, and received compensation.

6.1.6  Participants. Via a university mailing list, we recruited 43
participants from a local university (16 males, 27 females), aged
between 19 and 30 years old (M = 22.3, SD = 2.5), with diverse
disciplinary backgrounds from 18 different majors (e.g., Psychol-
ogy, Business, Political Science, Computing, Medicine). Participants
were randomly assigned to one of three variants. We recruited 15
participants per condition, due to no-shows the final distribution
was 14, 14, and 15 participants for Editable (E1-E14), CoExplain
(C15-C28) and Read-only (R29-R43). This minor imbalance does
not substantially affect the comparability of conditions. The study
was conducted through an online audio call, with participants con-
sent, we recorded the meeting and their screen-sharing during the
study. The study lasted for around 1 hour and participants were
compensated $16 USD in local currency.

6.2 Qualitative Findings

To investigate how users engage with CoExplain and benefit from
editable explanations, we conducted a qualitative analysis on their
interactions and post-trial interview. We organize our findings in
terms of the edit operations of writing to i) align the AI to the
user’s knowledge, ii) actively engage user understanding of the Al
decisions, and Al-enhancement to update iii) basic thresholds and
iv) complex topology.

6.2.1 Editing Aligns Al Reasoning with Users” Knowledge. Partici-
pants found the decision rules clear and easy to follow, which
made them accessible. R38 described the rules as “easily understand-
able” with “clear indicators of what orders to follow according to
quantifiable metrics”. C23 found rule creation approachable, stating,
“If you satisfy the first [condition], then look at the next, and so on.”
Participants considered the AI’s outputs as closely mirroring
their own reasoning. E12 explained her reasoning process on
house price prediction, ‘T followed the logic of house age first (older =
lower price), then grade, then living area, so the AI's behavior matches
my thoughts.” E14 similarly observed, “AI’s predictions mirrored
my thought process.” These comments reveal that editing allowed
participants to directly reflect their reasoning in the AI’s behavior.
Editing also enabled participants to align the Al with their ex-
pectations, which increased predictability and perceived reli-
ability. C25 noted, “Al’s prediction and my prediction are in line.
I can trust AI’s prediction.” E13 added, “When I adjusted the rules,
the AT’s predictions changed to match. It’s like the AI ‘thinks’ how I
do.” These reflections show that editing not only align Al with user
reasoning but also fostered user confidence in the AI's reasoning.
Some participants went beyond the provided guidelines, integrat-
ing their own domain knowledge. For instance, C21, a Pharmacy
student, noted during the heart disease prediction task, ‘T think
the Al is generally following me in terms of my beliefs, as well as
the values that I'm using. Like, it’s quite congruent with what I'm
thinking.” This demonstrates that rule editing can empower partici-
pants to project personal expertise into the AL However, alignment
is not always beneficial: when users lack domain knowledge or
misinterpret rules, the Al can reinforce incorrect reasoning.
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Overall, these findings indicate that editing supports active en-
gagement, allowing participants to shape the AI’s reasoning in
ways that improve understanding, predictability, and trust.

6.2.2 Editing Improves User Understanding through Active Engage-
ment. With Read-only Explanation, some participants struggled
to make sense of the Al's reasoning because they could not adjust
the rules. As R42 noted, “some portions don’t really make sense, like
how having more bedrooms at the end made it low when logically it
should be high.” Without the ability to intervene, participants often
resorted to guessing patterns, as R43 described, “There were some
attributes that were more repeatedly affecting decisions than other so
[1] started focusing on them.”

Allowing users to directly modify rules with Editable explana-
tion substantially improved their understanding. Many emphasized
that comprehension came naturally because they wrote the rules
themselves. E10 explained, “The judgment process was written by
myself, so I know which indicators will lead to which results.” As
E13 put it, ‘T know the rule well because I created it.” These reflec-
tions show how the act of editing turned explanation into active
engagement, strengthening users’ understanding about the AL

CoExplain went further by combining user edits with AI en-
hancements, enabling participants to see beyond their own assump-
tions. C21 described a shift: “At first, I didn’t understand why the
Al didn’t prioritize age... now I see age isn’t a strong factor, so it
makes sense.” C15 echoed this process of adaptation, acquiescing to
the Al’s logic during the house price prediction task: “The AI kept
rejecting [the age attribute], so maybe I should just follow the AI and
see.” Through such iterations, participants came to understand not
only their own rules but also the AI’s reasoning. Yet, enhancements
sometimes created confusion. C25 recalled, “During the enhance-
ment, the Al suggested that I swap the age and the cholesterol level, it
was not my original order, I think I am a bit confused.”

Together, these accounts show that editing, whether with self-
authored rules or collaborative enhancement, helped participants
grasp the AI’'s reasoning more effectively than passive observation.

6.2.3 Appreciation for the Advice of Conservative Updates on XAl
Rule Parameters. Participants valued CoExplain’s enhancement to
thresholds when those adjustments aligned with their knowledge.
When working on the medical task, C21 welcomed help with unfa-
miliar medical ranges, “Because I'm not familiar with the numbers.
For example, the max heart rate, so I'll accept that one.” Participants
regarded these edits as “light touches” that calibrated rather than
replaced their intentions, as C23 put it, "the values don’t differ by a
lot. I think the values are actually quite close to mine".

When threshold changes aligned with plausible expectations,
participants found them credible and useful. C19 grounded this
reaction in housing knowledge, “A grade 4 house is terrible, so it
sells low; a 98-year-old house is a fire risk—this aligns with what
I’d expect.” In health scenarios, concrete anchors made threshold
choices feel self-evident: C17 noted, “If you see someone with a 300
cholesterol level, there’s something wrong.”

Participants also appreciated when suggested thresholds added
clarity to their distinctions, as C25 reflected after getting his thresh-
old rounded for easier interpretability (e.g. 38 changed to 40 for age)
on the Income Prediction task, "straightforward with clear cut-offs.”
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Figure 7: Results from forward simulation trials for users to estimate the Al system’s prediction with and without viewing
explanations on a) Adult Income, b) House Price, and c) Heart Disease.

Not all changes, however, were viewed positively. A few par-
ticipants felt some adjustments were either too minor to matter
or misaligned with their expectations, for example, C25 noted on
heart disease prediction task, “the value change for resting blood
pressure is very small... and for the cholesterol level the change is very
significant, but I don’t think it is correct.” Such reactions suggest
that conservative updates were most effective when they align with
participants’ domain understanding.

Across these cases, threshold enhancements were accepted when
they fit participants’ knowledge, clarified their boundaries, and
addressed uncertainty without undermining ownership.

6.2.4 Topological Enhancements Enables Users to Refine Rules un-
der their Control. Participants frequently described topological en-
hancement as making rules clearer and easier to work with, while
still retaining control over key elements. C25 praised the legibility
and conciseness of the enhanced rules which makes it easier to
understand, “more simplified and easy to understand at a glance.”

C16 framed reorganization as providing a second opinion for
verification, “it gives you another flowchart for cross-reference, maybe
some branches are redundant, and you could improve.” Participants
used these structural views to streamline logic and remove clutter.

At the same time, participants actively moderated how much
restructuring to allow. C19 reported intentionally widening leeway,
‘T lowered the [structure] similarity to the lowest because I don’t need
the Al to stick to my structure.” C15 explained using constraints to
preserve a belief, “T wanted to make the Al still follow the attribute,
both similarities need to be high enough.” Participants also articulated
trade-offs. C26 reflected on domain-contingent deference, T trusted
my own judgment in familiar areas (like house prices),” while still
appreciating support where knowledge was thinner.

Resistance to structural edits surfaced when participants felt
important features were dropped. C17 objected to removals, “Some-
times it didn’t really enhance it because it dropped the bathroom and
bedroom attributes.” C24 preferred complexity and accepted whole-
sale restructuring as, ‘T didn’t insist on my own structure because
I think the AI will just give me a better one. It’s very complex, and
my own one is very simple.” Together these accounts show partici-
pants selectively embracing simplification and reorganization while
exercising granular control over what should remain intact.

6.2.5 Take-away. Overall, participants used editing to align the
system’s reasoning with their own and to understand how and

why it reasoned differently when it did. They welcomed threshold
and structural enhancements that reflected their knowledge, while
actively moderating changes. Editing and enhancements together
supported bi-directional alignment: users shaped the Al with
their rules and learnt how it refined and extended their reasoning.

6.3 Quantitative Results

We evaluated how Editable and CoExplain explanations affect user
understanding, alignment, and engagement compared with Read-
only explanations. We consider results with p < .002 as statistically
significant to account for up to 25 multiple comparisons up and
avoid Type I error. Our analyses address four questions: i) do Ed-
itable and CoExplain improve user-Al faithfulness, ii) how do they
influence user-Al alignment and model performance, iii) how do
they shape user engagement, and iv) how are these explanations
perceived by participants.

6.3.1 Statistical Analysis. For statistical analysis, binary measures
P1, A2, and A3 were analyzed using a Generalized Linear Mixed
Model (GLMM) with a binomial distribution and logit link. Fixed
effects included XAI Type, Dataset, whether the trial was with or
without XAI and their interactions, with Participant ID as a random
effect. For all other measures, we fit Linear Mixed-Effects Models
with XAI Type, Dataset, and their interaction as fixed effects, and
Participant ID as a random effect, using restricted maximum like-
lihood (REML) estimation. We examined statistical controls with
demographic and background variables (gender, major, age, domain
familiarity, and prior Al experience) as covariates, but found no ex-
hibited significant effects. We thus omitted them from our statsitical
models. We report significant differences (p < .001), and their effect
size using Cohen’s d [30] from the baseline Read-only condition.

6.3.2 Editable Explanations Improve User-Al Faithfulness. We found
significant main effects of XAI Type (p < .0001), w/ XAI (p < .0001),
and Dataset (p = 0.0003). Post-hoc contrast tests showed that both
Editable (p < .0001) and CoExplain (p < .0001) significantly im-
proved user-Al faithfulness compared to Read-only, while not dif-
fering significantly from each other.

Adult Income. As shown in Fig. 7a, Read-only participants per-
formed the worst (M = 66.6% without XAI; 77.1% with XAl). Editable
performed better overall (M = 80.6% and 87.5%), showing large ad-
vantages over Read-only in both settings (d = 0.94 and d = 0.87).
CoExplain achieved similarly strong results (M = 81.4% and 91.9%),
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Figure 8: Results measuring Al performance on pre-trained and guideline distribution and alignment with guideline rules
across different XAI types: a) Al accuracy on the pre-trained distribution, b) AI accuracy in the guideline distribution, and c)

distance between XAI explanations and guideline rules.

again with large differences relative to Read-only (d = 0.98 and d
= 1.32). Both Editable and CoExplain thus fostered substantially
better user understanding than Read-only.

House Price. Editable participants achieved high faithfulness (M
= 82.5% and 89.6%), with large effects relative to Read-only (d = 1.37
and d = 2.01). CoExplain showed similarly strong performance (M
= 80.6% and 87.6%), again yielding large differences from Read-only
(d = 1.21 and d = 1.80). By contrast, Read-only participants showed
minor improvement (M = 61.6% and 61.9%), as shown in Fig. 7b.

Heart Disease. Editable explanations were particularly beneficial
in this task (Fig. 7c). Editable participants showed strong perfor-
mance (M = 89.2% and 92.8%), with large effects relative to Read-only
(d = 1.99 and 1.62). CoExplain achieved similarly high faithfulness
(M = 84.4% and 93.9%), also with large differences from Read-only
(d = 1.56 and 1.62). In contrast, Read-only participants performed
much worse overall (M = 60.5% and 74.4%) and benefited far less
from explanations that were not aligned through user editing.

Across all datasets, Editable and CoExplain supported higher
initial levels of user-Al faithfulness and larger gains once expla-
nations were available, demonstrating improved understanding.
These results support our hypothesis that editable explanations
leverage the generation effect from active learning: by construct-
ing and refining rules, users internalized the AI's behavior more
effectively, amplifying the benefits of explanation access.

6.3.3 CoExplain Improve Al Accuracy. As shown in Fig. 8a, the
model revealed significant main effects of XAI Type and Dataset
(p < .0001), with no significant interaction or effect of Edit Itera-
tions. Read-only achieved the highest pre-trained accuracy (M =
78.9%), Editable the lowest (M = 59.8%), and CoExplain (M = 69.9%)
increased the accuracy from Editable with AI enhancement (d =
1.25) and minimized the gap with data optimized Read-only (d =
0.81), improving editing accuracy without sacrificing alignment.

6.3.4 Editable Explanations Improve Prediction Alignment. We found
strong effects of Dataset and its interaction with XAI Type (p <

.0001). Although the main effect of XAI Type was not significant,
least-square means showed clear improvements for Editable (d =

0.80, M = 71.4%) and CoExplain (d = 1.03, M = 75.7%) over Read-only
(M = 49.5%). Editing effort also mattered, with Iterations showing a

robust effect (p < .0001).

6.3.5 Editable Explanations improve Topological Alignment. Fig. 8c
shows the rule-level distance measure. The model revealed a strong
main effect of XAI Type (p < .0001) and an interaction with Dataset
(p = .0016). Without user editing, Read-only showed the farthest
topological difference from the guideline rules (M =13.74 edits),
comparing with it, Editable (d = 1.92, M = 3.13) and CoExplain (d =
1.39, M = 6.64) achieved a much shorter distance, showing a closer
topological alignment with the guideline rules

Together, guideline accuracy reflects alignment at the prediction
level, while distance reflects alignment at the explanation level that
users directly shape. Editable maximized alignment but sacrificed
performance, Read-only maximized performance but ignored user
knowledge, and CoExplain balanced both—achieving near-optimal
accuracy with explanations that stayed closer to user rules.

6.3.6 User Engagement. We analyze editing interaction logs to
compare user engagement across XAl types in terms of a) the
number of edit operations, b) the number of edit iterations, and c)
editing time (Fig. 9).

# Edit Operations. Fig. 9a showed a significant main effect of
XAI Type (p < .0001), with no effects of Dataset or the interaction.
Editable required the most operations (M = 14.05), while CoExplain
reduced this load (d = 1.94, M = 9.00), indicating more efficient
editing with Al support.

# Edit Iterations. As shown in Fig. 9b, XAI Type had a strong effect
(p < .0001), with no influence from Dataset or the interaction. Ed-
itable users needed more revision rounds (M = 3.62) than CoExplain
users (d = 1.91, M = 1.59).

Editing Time. Fig. 9c similarly showed a main effect of XAI Type
(p < .0001). Editable users spent more time (M = 7.18 mins) than
CoExplain users (M = 3.36 mins), a 53% reduction with d = 2.33,
demonstrating substantial savings in editing effort.

Together, these results show that while Editable required the
most edit operations, iterations, and time, CoExplain significantly
reduced user effort while still allowing meaningful interaction.
Combined with its performance and alignment results, CoExplain
provided faithful and efficient Al enhanced editing.

6.3.7 Al-Explanation Faithfulness and Edit Outcome Analysis. Faith-
fulness quantifies how closely the distilled decision tree matches
the neural network’s predictions. Since a distilled tree explanation
may oversimplify the neural network model, the explanation may
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Figure 9: Results measuring user engagement in terms of: a) the number of edit operations, b) the number of edit iterations,

and c) log of the time spent on editing.
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Figure 10: Analysis of edit outcomes in relation to the faith-
fulness of the tree explanations to the underlying model. a)
Al accuracy on the pre-trained distribution, b) AI accuracy
on the guideline distribution, c¢) TED between XAI and pre-
trained rules, and d) TED between XAI and guideline rules.

be unfaithful to the model. This unfaithfulness could mislead users
to editing irrelevant attributes. Hence, we investigate if faithful-
ness was low and whether it led to ineffective user edits. Across
350 trials from the user study, the average faithfulness was high,
97.5% for Adult Income, 96.8% for House Price, and 96.53% for Heart
Disease. Figure 10 plots faithfulness against four editing outcomes:
a) Al accuracy on the pre-trained distribution, b) Al accuracy on
the guideline distribution, c) distance between the XAI rules and
pre-trained rules, and d) distance between the XAI rules and guide-
line rules. Almost all trends are not significantly different from
0, indicating no clear effect on edit outcomes due to faithfulness.
Interestingly, for House Price, accuracy decreases as Faithfulness
increases, suggesting that users may be less engaged in editing a
larger tree. In general, the results suggest that variation in faith-
fulness within the observed range did not systematically influence
how well users edited the rules. Future work could study this effect
by aggressively pruning the tree explanation or training a model
on a significantly more complex domain.
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Figure 11: Perceived ratings of understanding of Al rules and
decisions, ease of use, and alignment of enhancements across
XAI types. Al enhancement is only available in CoExplain,
Read-only does not support editing,.

6.3.8 Perceived Ratings. We collected perceived ratings from par-
ticipants about their understanding of the resulting Al model in
terms of its rule explanations and decisions, the ease of use of the
system, and the ease of use and alignment of CoExplain enhance-
ments (Fig. 11).

For understanding the Al model, editable conditions were clearly
preferred. A mixed-effects analysis revealed a significant effect of
XAI Type on perceived understanding of Al behavior (p = 0.0006)
and rules (p = 0.0008). Post-hoc contrast tests showed that both
Editable (M = 1.69 (~ 2 Agree) for Understanding of Al Decisions;
M = 1.86 (= 2 Agree) for Understanding of Al Rules) and CoExplain
(M = 1.36 (~ 1 Somewhat Agree); M = 1.77 (~ 2 Agree)) were rated
significantly higher than Read-only (M = 0.31 (~ 0 Neither Agree
nor Disagree); M = 0.64 (~ 1 Somewhat Agree)).

Participants generally rated the editing interface as easy to use.
Most users found CoExplain’s enhancement suggestions control-
lable and well aligned with their rules with an acceptance rate
of 89.74% of enhancement edits. However, a few participants ex-
pressed dissatisfaction with certain Al suggestions, noting that they
occasionally felt misaligned with their goals. C19, who was familiar
with the real estate, complained about the Al on the house price
prediction task as "I think it was way too simple."
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In summary, participants perceived interactive explanations as
more supportive of understanding the Al model, easier to use, and
better aligned with them. These perceptions reinforce the value
of engaging users in a collaborative relationship with the system,
rather than limiting them to static, read-only explanations.

6.4 Summary of Results

Our results show that Editable explanations improved user—Al
faithfulness, understanding, and perceived ease of use compared to
Read-only explanations. The summative study demonstrated that
editable explanations led to higher alignment and better understand-
ing of the Al logic, with CoExplain further reducing editing effort
through co-editing enhancements. Qualitative findings revealed
that participants used editing to align the AI with their knowledge
and engaged with enhancements to refine thresholds and topology
under their control. Together, these results suggest that editable
explanations, and CoExplain in particular, foster more effective and
efficient human-AI alignment than static, read-only explanations.

7 DISCUSSION

We discuss Editable XAI and its implementation as CoExplain in
terms of the scope, relation to other approaches, and the collabo-
rative challenges of human-AI co-editing. Together these themes
highlight how editable explanations create new opportunities for
bi-directional alignment between humans and Al

7.1 Scope and Generalization of CoExplain

While our implementation of Editable XAI as CoExplain targeted
structured data with decision tree as the knowledge representation,
we discuss how the framework of Editable XAI can be generalized.

7.1.1  Beyond Symbolic Rules to General Human Knowledge. CoEx-
plain was designed specifically for human knowledge expressed
as symbolic rules. However, the broader principle of Editable XAI
is not limited to this representation. In many domains, experts en-
code knowledge through heuristic equations or domain-specific
formulae, for example, a risk score calculated as Risk = 0.3 X Age +
0.5 X Blood Pressure, which, like rules, offer a shared medium inter-
pretable by both humans and Al Extending editable explanations to
such mathematical expressions would broaden applicability, allow-
ing collaboration around quantitative heuristics as well as logical
conditions. While our work does not address this direction directly,
research on knowledge distillation [47], neurosymbolic integra-
tion [53], and equation learner networks [69] highlight promising
avenues that could inspire future methods for parsing and refining
equations within editable XAI frameworks.

7.1.2  Beyond Neural Networks to Diverse Al Models. While CoEx-
plain is implemented for neural networks, the principle of Editable
XAI as using an editable representation as a shared medium for
human-ATI alignment is not limited to this model class. Neural net-
works provide high accuracy, flexible gradient-descent training, and
the ability to incorporate user-specified constraints, making them
well-suited for editable explanations. Editable XAl is also valuable
for glass-box models, such as decision trees or decision sets [77],
where users can already inspect and directly modify model compo-
nents. In high-stakes domains, combining glass-box models with
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Figure 12: Use of CoExplain on ECG signal data with feature
extraction. Concept features extracted using NeuroKit2 [93],
decision tree constructed from MG Khan [67]. Leaf nodes
denotes diagnosis, Bundle Branch Block (BBB), IntraVentric-
ular Conduction Delay (IVCD) and Wolff-Parkinson-White
syndrome (WPW).

editable explanations can further enhance alignment, transparency,
and trust [107]. For other black-box models, such as recurrent or
ensemble models, Editable XAI would require identifying an appro-
priate intermediate representation, similar to how CoExplain uses
decision tree rules, that preserves model fidelity while supporting
human edits and comprehension. This suggests that the concept
of Editable XAI could potentially be applied more broadly across
diverse model families, beyond neural networks.

7.1.3  Beyond Structured Data to Concepl-based Explanations. Our
evaluation targeted binary classification tasks on structured data,
though the parsing algorithm also supports multiclass classification.
Extending to regression tasks would require new rule-to-network
mappings that accommodate continuous outputs. Extending to un-
structured data can be done by first interpreting semantic concepts,
then reasoning over them in a structured (logical) way.

With the importance of explaining in interpretable concepts [86,
129], XAI techniques for concept-based explanations can be used
to infer human interpretable concepts [45, 70, 103], that are then
treated as tabular data to be explained and edited with CoExplain.
Recent works have integrated concept extraction and logical neural
networks [27, 62], but they are not editable. Concept-based explana-
tions assume that the concepts align with human prior knowledge,
but if they are spurious, users may want to edit them [58]. Hence,
future work can extend CoExplain for unstructured data by using
concept-based explanations with editable concepts.

As a preliminary proof-of-concept, we demonstrate CoExplain
for medical diagnosis on electrocardiogram (ECG) with ECG con-
cept features from a time series ECG trace (see Fig. 12, modeling
details in Appendix A.2). Here, we extracted concepts (e.g., QRS Du-
ration tgRrs, PR Duration tpg; see Fig. 12a) using the NeuroKit2 [94],
and used CoExplain to train a neural network, and explain with a
decision tree (Fig. 12b) based on those concept features.

7.1.4  Beyond Monolithic Model to Modular Sub-Models. We have
explored the use of CoExplain to parse and distill interpretable de-
cision trees with feedforward neural networks. To manage the cog-
nitive for our participants, we had pruned the tree size to be no
larger than a depth of 4 levels and 16 leaves. This also limited the
corresponding neural networks to about 5 layers with 150 neurons
in total. Yet, the technical approach is not limited to small trees
or networks, and can scale to larger models. For example, an un-
pruned tree of depth 10 can correspond to a NN of 20, 460 neurons.
Recent works knowledge distillation techniques (e.g., layer-wise



Editable XAl: Toward Bidirectional Human-Al Alignment with
Co-Editable Explanations of Interpretable Attributes

a) 80 b) 15
__10
Q)
L g 10
Je0{ 7 UTETTTTTTTTTTTTT € | —f-Sememeg e
® i)
5 2
I [a]
50 =
: 5 5
a —— CoExplain (Guideline) w
= 40| == CoExplain (Pre-trained)
Fine-Tuning (Guideline)
Fine-Tuning (Pre-trained) 0
30
0 20 40 60 80 100 0 20 40 60 80 100

% of Guideline Data % of Guideline Data

Figure 13: Comparison of CoExplain and Direct Fine-Tuning
showing the trade-off between effortful human labeling and
alignment to distributions.

distillation [117], soft decision trees [39], tree embeddings [80]) can
be leveraged to further scale to the overall technical approach to
accommodate modern deep models like DenseNet-169 [122].

In contrast, human cognition is more bounded, and this presents
scalability challenges too, as observed for large expert systems [61,
83]. Hence, how could users edit a truly large and complex model?
We hypothesize that abstraction [14] with modularity [86, 95, 129]
could help users to interpret the model hierarchically with sub-
models. Instead of editing a large monolithic model, the user can
separately edit each sub-model and refine them along a shared
module-module interface. This is beyond the scope of our work and
should be designed and examined in future work.

7.2 Relation to Other XAI and AI Approaches

We situate Editable XAI within broader work on human-AI interac-
tion, highlighting both its differences from and complementarities
with interactive explanations, interactive machine learning and
large language models.

7.2.1 Editable XAl vs. Interactive Explanations. Existing interactive
explanation methods focus on enhancing user understanding by
allowing queries through clarifications such as counterfactuals [96],
examples [21], or contrastive cases [19, 119]. While effective for
inspection, these approaches typically leave the underlying rea-
soning fixed, limiting users’ ability to align the model with their
domain knowledge. Editable XAI introduces a new level of interac-
tion by making explanations themselves editable: users can directly
reshape the decision logic or reasoning artifacts, which in turn
updates the model’s behavior. CoExplain exemplifies this approach,
demonstrating that editable explanations can improve bi-directional
alignment, allowing users not only to understand but also to correct
and align model reasoning. The concept of Editable XAl is general
and could be applied to other explanation techniques, suggesting a
broader paradigm where explanations serve as manipulable inter-
faces for collaborative human-AlI reasoning, especially in domains
where users already possess domain expertise (e.g., medicine or
finance) and seek not just to interpret but also to correct or refine
the model’s reasoning for alignment [14, 86].

7.2.2  Editable XAl vs. Interactive Machine Learning. Interactive ma-
chine learning (IML) approaches, such as programming by demon-
stration, active learning, or reinforcement learning from human
feedback, improve model behavior through iterative data provision
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clude LLM usage in the workflow of CoExplain. This embeds
the user prompting an LLM read distilled rule explanations
and suggest revisions to be parsed by Editable XAI

and retraining [36]. These methods are effective for expanding cov-
erage and adapting to new tasks but typically require substantial
user effort in generating labels or demonstrations [3].

Editable XAI operates at a different level: rather than supplying
new data, users directly modify reasoning artifacts such as rules,
which can be more efficient in settings where labeling is costly,
slow, or sensitive (e.g., medical diagnosis), while also providing
transparency about how edits affect model logic [49].

Despite the labor intensity, fine-tuning with human labeling
could achieve better performance than editing via XAI To investi-
gate the trade-off between effort and accuracy, we compare CoEx-
plain with direct fine-tuning using varying amounts of guideline
data on the Heart Disease task with 460 instances. For fine-tuning,
to simulate human labeling, we used the guideline decision tree of
the user study (Section 6.1.4) as the label oracle. For CoExplain, we
used the average performance acquired from the user study (Sec-
tion 6). Fig. 13 shows that the Fine-tuned model has less alignment
toward the Guideline goal (low Test Accuracy, high Edit Distance)
than CoExplain, but rises as more Guideline data is labeled. Only
when 32.17% of the data (148 instances) are labeled, then would
its performance match CoExplain. Assuming labeling at a rate of
6.6 seconds per instance [6], this would require 16.28 minutes of
human effort, which is longer than CoExplain’s 3.36 minutes.

We view Editable XAI as complementary to IML and other
human-in-the-loop methods: user edits can refine reasoning struc-
tures, while data-driven techniques expand coverage in areas where
rules are insufficient, and interpretable glass-box models can pro-
vide foundations for further editable adjustments [41]. Such hybrid
workflows promise to balance expert alignment, efficiency, and
robustness by combining the strengths of explanation editing and
data-driven feedback.

7.2.3  Editable XAl and Large Language Models. Large language
models (LLMs) provide alternative pathways for aligning Al with
human knowledge, including fine-tuning [57], in-context learn-
ing [33], and prompt engineering [108]. While these approaches
can produce flexible and context-sensitive outputs, they are inher-
ently stochastic and may not consistently follow user-intended
reasoning. LLM-generated explanations are also prone to halluci-
nation [65], which can compromise fidelity and trustworthiness.
Editable XAI offers a complementary approach: by represent-
ing reasoning as structured, manipulable concepts, it supports pre-
dictable bi-directional alignment and allows users to directly correct
or refine Al behavior. LLMs can be incorporated into this workflow
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by providing them with contextual information about the dataset
and existing rules, for example through prompt-based descriptions
or in-context examples of the structured explanations (see Appen-
dix A.3). This enables the LLM to suggest edits, alternative rules, or
explanations while staying aligned with the user’s goals, explana-
tory schema, and data. Fig. 14 illustrates how combining LLMs with
editable XAI can reduce human effort and support co-created edit-
ing goals. Fig. A.2 shows an exploratory results of the LLM-infused
approach with enhanced tree explanations from CoExplain.
Future work could explore hybrid workflows to combine the
flexibility of LLMs with the structured guarantees of Editable XAI,
maintaining user control and leveraging LLM’s suggestions.

7.3 Collaboration for Bi-Directional Alignment

Editable XAI positions explanation editing as a collaborative pro-
cess. Beyond transparency, its value lies in how humans and Al
negotiate shared control, adapt to each other, and co-construct
reasoning over time.

7.3.1 Bringing Al into the Human Editing Loop. Editable XAI should
be framed as a dialogic process, where explanations are shaped
through iterative contributions from both human and AI [97]. Prior
work in IML has relied heavily on human labor, such as labeling,
curating, or correcting examples, while under-utilizing the AI’s ca-
pacity to optimize and propose alternatives. By enabling joint edits
on a shared structure, CoExplain leverages both forms of expertise:
users bring domain knowledge, while Al suggests simplifications,
counterexamples, or refinements grounded in data. This transforms
explanations from static artifacts into evolving negotiation spaces,
supporting not just model transparency but also mutual adaptation
between human reasoning and machine optimization [84, 92].

7.3.2 Human Mistakes and Quality of Input. A central design chal-
lenge lies in managing the quality of human contributions. Users
may provide incomplete, biased, or erroneous rules, which could
propagate harmful reasoning into the system if incorporated uncrit-
ically [54, 104]. Editable XAI offers a partial safeguard by making
the editable medium shared: in CoExplain, both human and AI oper-
ate on the same decision tree explanation, allowing the Al to correct
mistakes through data-driven optimization, or suggest alternative
edits to improve low-quality inputs. Still, additional challenges re-
main. One risk is overconfidence, where users trust their expertise
even when it is limited, potentially leading to rigid or incorrect
edits [25]. Another is over-reliance, where users defer excessively
to the Al and accept its suggestions uncritically [18]. While Editable
XALI can alleviate these effects by exposing reasoning structures
and making corrections visible, it cannot resolve them entirely. Ad-
dressing them will also require drawing on findings from empirical
XAl research on human-Al trust [100, 120] and confidence [81] to
design safeguards that balance user agency with error prevention.

7.3.3 Balancing Initiative in Collaboration. Editable XAI frames
collaboration through a shared editable medium, but bi-directional
alignment also depends on calibrating initiative across different
stages of interaction [42]. Initiative shapes not only how edits un-
fold, such as when humans should take the lead in editing and when
the Al should propose refinements, but also how collaboration be-
gins, such as whether rules are first authored by humans, generated
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by the Al or co-constructed from partial contributions [52]. Our
study focused on the human-first setting, where users defined rules
and the AT adapted through optimization. Other starting points raise
new opportunities and concerns. Al-initialized rules may accelerate
entry into complex domains, but risk biasing users toward machine
suggestions [101], while human-initialized rules foreground exper-
tise but may overlook patterns that are only visible in data [46].
Developing mechanisms to balance initiative at both the outset and
during ongoing edits remains central to positioning Editable XAI
as a genuine collaboration rather than a one-sided process.

7.4 Limitations and Future Work

Our work has several limitations. First, CoExplain currently uses
decision tree rules as the interaction medium, which effectively
links human reasoning with model optimization, but suffers from
loss of details like other forms of easily understandable explana-
tions [121]. Future work may extend Editable XAI to additional
knowledge representations, such as rule sets or heuristic non-lin-
ear equations to address broader cases.

Second, we evaluated CoExplain only on structured inputs with
small models, whose attributes align well with users’ deliberative
reasoning. The method does not directly extend to perception tasks
(e.g., vision, audio) or language reasoning, which involve innate
mental processes due to stimuli or low-level, practiced skills. Fu-
ture work can integrate other modalities through feature extrac-
tion and concept-based explanations (Section 7.1.3) and to larger
models through modularization and abstraction (Section 7.1.4).

Third, although our user study included a heart disease task
and several participants with medical backgrounds, we focused on
usage by lay users. Future work should investigate how domain
experts would use Editable XAI or what schemas they would wish
to edit with. Ditferent fields encode expertise in distinct forms,
and enabling editing through domain-familiar representations may
reduce cognitive load and support more trustworthy outcomes [86].

8 CONCLUSION

We introduced Editable XAI through CoExplain, a neurosymbolic
framework that allows users to read, write, and enhance rule-based
explanations. In a study with 43 participants, Editable XAl improved
understanding and alignment compared to read-only explanations,
while CoExplain further reduced effort and balanced user knowl-
edge with near-optimal performance. These results highlight the
value of writable explanations as a means of fostering bi-directional
alignment and active engagement. Future work can extend Editable
XAl to other explanation forms and domains, advancing more col-
laborative and controllable human—Al interaction.
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A APPENDIX
A.1 Data Partitioning

To provide participants with a unified baseline of knowledge across the three scenarios, we partitioned each dataset into two distributions: a
Guideline Distribution and a pre-trained Distribution. The guideline distribution was used as the knowledge source for participants to
construct their decision rules. This mimics the partial, textbook-like knowledge that cannot be directly applied to real-world practice. In
contrast, the pre-trained distribution was used to train the Al model and was not revealed to participants, representing real-world data that
cannot be fully anticipated from the guideline distribution.

This partitioning created a deliberate misalignment between participants’ reasoning and the AI model’s prediction behavior. Our design
follows prior work on tackling Out-of-Distribution (OOD) challenges in human-AI collaboration [24, 74, 76, 87, 88]. We split by gender for
Adult Income and Heart Disease, and by age (below/above 50) for House Price. Distribution shifts were quantified via feature-wise Wasserstein
distances and label KL divergence. Adult Income showed moderate shifts (Wasserstein = 0.4844, KL = 0.1412). House Price showed the largest
feature shift (Wasserstein = 0.8587) but minimal label shift (KL = 0.0188), reflecting age-related housing differences without major price
change. Heart Disease showed the smallest feature shift (Wasserstein = 0.3003) but the largest label shift (KL = 0.3092), reflecting gender-based
prevalence differences with stable feature distributions. Together, these datasets cover different types of distribution shifts.
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A.2 Demonstration of Applying CoExplain on ECG Signal Data with Feature Extraction

We implement and generalize our CoExplain explanation method to ECG signal data as a demonstration with feature extraction.

A.2.1 Dataset. PTB-XL [123] contains 21837 multi-labeled 10-second ECG records gathered from 18885 patients. In total, PTB-XL has 71
labels consisting of diagnostic labels describing specific CVDs associated with the ECG, form labels describing ECG’s morphology, and
cardiac axis labels.

A.2.2  Feature Extraction. We extract interpretable ECG features using NeuroKit2 [93], following standard clinical and signal-processing
conventions. The pipeline computes time-domain intervals (e.g., RR, PR, QRS, QT), frequency-domain heart-rate-variability (HRV) metrics,
and morphology-based measurements (e.g., amplitudes and segment deviations), all of which can be directly incorporated into CoExplain as
editable concepts. Details of extracted features can be found in Table 2.

A.2.3 Domain Rules. We constructed the decision tree rules for ECG diagnosis from Rapid ECG Interpretation by MG Khan [67]. ECG
diagnosis are organized into 9 interconnected steps, we converted the 9 steps flowcharts into 9 decision tree rules, each used to train a
specific module of the ECG diagnosis network. Fig. A.1 shows an example of the ECG diagnosis rules.

Determine

Rhythm —— Sinus?

Yes No Abnormal rhythm

Rate
(see Table 2-2)

Do arrhythmia assessment
(see Step 11 and Chapter 11)

VPBs orAPBs* Narrow QRS  Wide QRS Bradyarrhythmia
tachycardia  tachycardia (Chapter 11)
(Figure 2-37) (Figure 2-38)

*Ventricular premature beats, atrial premature beats

Figure A.1: Example of ECG step rules used in Rapid ECG Interpretation (MG Khan, 2008, p. 36) [67]. Step-by-step method for
accurate ECG interpretation. Step 1: Assess rhythm and rate.

A.2.4 Model Organization. For each of the 9 steps, we have one neural network regularized by one decision tree rule to predict certain
diagnosis with specific concept input features, steps dependent of others steps are interconnected and takes the previous steps’ output as
input.

A.2.5 Training and Predicting. We initialize the step modules with the parsing algorithm, and treat the ECG rules from [93] as the source
of human edit, and regularize the training of the neural networks with them. The prediction task performed was a multi-label task and a
total of 21 diagnoses were considered, models trained with Adam optimizer for 50 epochs. After testing on the test set, CoExplain have an
accuracy of 92.02% with an AUROC of 0.8360.
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Table 2: ECG Features, Abbreviations, and Explanations

Feature Name Abbreviation Explanation

Heart Rate HR Heart Rate of the patient

Bradycardia BRAD Whether the patient has bradycardia (HR < 60 bpm)

Tachycardia TACH Whether the patient has tachycardia (HR > 100 bpm)

Sinus SINUS Whether the rhythm is sinus: Each P wave in lead II should be
positive AND precedes a QRS complex

RR interval range RR_DIFF max R-R interval - min R-R interval

PR duration PR_DUR Duration of the PR segment

Prolonged PR LPR Whether the PR interval is prolonged

QRS duration QRS_DUR Duration of the QRS complex

Prolonged QRS LORS Whether the QRS complex is prolonged

Prolonged QRS for WPW  LQRS_WPW Whether the QRS complex is prolonged by WPW’s standards

Short PR SPR Whether the PR interval is shortened

ST segment amplitude ST_AMP_x Mean amplitude of ST segment in lead x

ST Elevation STE_x Whether the ST segment is elevated in lead x

ST Depression STD_x Whether the ST segment is depressed in lead x

Poor R-wave Progression PRWP Whether R waves are not within desired ranges for at least one
lead in V1-V4

Q wave duration Q DUR_x Duration of the Q wave in lead x

Q wave amplitude Q_AMP_x Amplitude of Q wave in lead x

Pathological Q wave PATH_Q x Whether the Q wave in lead x is pathological

P wave duration P_DUR x Duration of P wave in lead x

P wave amplitude P_AMP_x Amplitude of P wave in lead x

Prolonged P wave LP_x Whether the P wave is prolonged in lead x

Peaked P wave PEAK_P_x Whether the P wave is peaked (high amplitude) in lead x

Age AGE Age of the patient

Old age AGE_OLD Whether the patient’s age is greater than 30

Male MALE Whether the patient is male

R wave amplitude R_AMP_x Amplitude of R wave in lead x

S wave amplitude S_AMP_x Amplitude of S wave in lead x

R/S Ratio RS RATIO x Ratio between amplitudes of R and S waves in lead x

Peaked R wave PEAK R x Whether the R wave is peaked in lead x

Deep S wave DEEP_S x Whether the S wave is deep (low amplitude) in lead x

Dominant R wave DOM_R_x Whether R wave amplitude is greater than that of the S wave

Dominant S wave DOM_S_x Whether S wave amplitude is greater than that of the R wave

T wave amplitude T_AMP_x Amplitude of T wave in lead x

Inverted T wave INVT x Whether the T wave is inverted in lead x

Sum of QRS QRS_SUM The QRS area above the baseline minus the QRS area below

Positive QRS POS_QRS_x The QRS is positive in lead x

Normal cardiac axis NORM_AXIS Whether the patient has a normal cardiac axis

Left axis deviation LAD Whether the patient’s cardiac axis deviates toward the left

Right axis deviation RAD Whether the patient’s cardiac axis deviates toward the right
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A.3 Prompt and Example from Comparing LLM with CoExplain

Prompt. Do not use any previous chat’s memory; only provide an output in the input form of JSONLogic. Suggest an enhancement on this
rule to improve accuracy on the attached dataset. While staying faithful and making changes minimal, you are not required to preserve the
rule exactly. You may refine thresholds, modify structure, prune branches, or extend the rule with attributes from the dataset.

Input.

{"if":[
{">":["marital-status",0.5]1},
{"if": [

{">":["education-level" 131},
"high",
i [{">":["working-hours",36]%},"high", "low"]}
13,
{"if":[
{">":["investment-gain",0.5]},
{"if":[

{">":["education-level", 1313},
{!Iif_"l:[{Il>'l:[7lagell’3®]}, ”high", "]_OW"]},

"low"
13,
"if":[{">":["working-hours",361},"high","low"1}
13

13
Output.

{"if":[
{">":["marital-status",0.5]1},
{"if":[

{">":["education-level",12]},
"high",
{"if":[

{">":["working-hours",35]},
{!Iif‘":[{II>II:[|IageII’28]}, llhigh", "]_OW"]}’

"low"
1}
1%,
{"if":[
{">":["investment-gain",0]},
{"if": [
{">":["education-level", 121},
{"if":[
{">":["working-hours", 401},
"high",
{"if":[{">":["age",32]1},"high","low"]}
13,
"low"
13,
{"if":[{">":["hours-per-week",38]13}, "high","low"]1}
13

13
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a) e high
User start
. age >30 e high
(Accuracy: 54.6%) ¢ has investment-gain
o low
b) ¢ high
¢ has investment-gain e high
User e working-hours > 35
+LLM age >30 e low
(Accuracy: 60.2%)
. high
e education-level > 13
o low

c
) ¢ high
e working-hours > 31
o low
User e age >22
+ CoExplain education-level > 13 o high
(Accuracy: 74.1%) ¢ has investment-gain
e low
o low
d) e high
e working-hours > 31
o marital-status is married o low
User o low
+LLM education-level > 12
+ CoExplain high
. ®
(Accuracy: 79.6%) » working-hours > 41
¢ has investment-gain o low

e low

Figure A.2: Comparison of decision trees based on the Adult Income dataset as a demonstration. user a) writes initial rules,
b) rewrites with LLM-prompted rule edits, c) receives rules after (a) enhanced by CoExplain, and d) receives rules after (b)
enhanced by CoExplain.
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A.4 Edit History Snapshots

Fig. A.3 shows the difference on human editing effort between Editable and CoExplain, we report the averaged structure editing operations,
threshold editing operations and total editing operations per edit iteration. Results suggest that most editing operations are on structure,
while threshold edits comes in later iterations as minor refinements, Editable users adjust their threshold more frequently than CoExplain
users. Editable users takes more iterations than CoExplain users to finalize their model, and continue to make minor changes on thresholds
during later iterations.

Fig. A.4 shows an editing history snapshot from the user study with C15, who spent 4 iterations with CoExplain to reach a final decision
tree rule. From the edit history, user started with a self-created decision tree rule of relatively low accuracy of 66.02%, and used the CoExplain
enhancement to refine the rules, Al edits are shown on the middle bar of the screenshot. For the first iteration, AI made 4 edits on C15’s
creation, and increased the accuracy to 71.77%, without drastic change on user’s original creation. C15 accepted CoExplain’s editing and
choose to further refine on the ATl’s creation, together with Al enhancement, the accuracy gradually increased to 73.77%, and C15 finalized
the model after the third iteration.

—e— CoExplain
Editable

B (o)) [oc]

N

Average Structure Edits

o
L

Average Threshold Edits
e o o o ¢
N B o ©® O

o
o

e )] w

Average Total Edits
N

(=]

1 2 3 a 5 6 7 8
Iteration

Figure A.3: Human editing effort from Editable and CoExplain
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@ Enhance @ Simuate

© Configure

Iteration 1:

Rule /' impon  Downiosd Enhance ~ | Edit Operations 2 Accept

Left — User initial creation with :
66.02% accuracy. 5

Right — Al enhanced version with -
71.77% accuracy. sdotemient 21w

martakstatus ls married « bigh

« workingrhours > 36

educationtevel > 14
+ educationdevel > 13

« has investment.gain « high « has investment.gain
« workinghours > 40

Al edits shown on middle bar
“Edit Operations™.

0 Current Tree Accuracy 0 Trained Tree Accuracy
Correct
'ceurlcy 66.02% 1057  Total Predictions 1601 Accuracy 71.77% G 1149 Total Pregicligns. 168
Predictions Prediction 2625.07-20 15:15:39
Iteration 2:  Configure @ Enhance @ Simulate

Rule /' impot  owniosd Enhance ~ | Edit Operations £ Accept Proceed to Simulation

Left — User accepted previous Al
suggestion and done further
edits, with 68.64% accuracy.

Right — Al enhanced version T T

based on user edits with 71.89% T

educationdevel > 14 « has nvestment gain
« educationevel  >13

, =
accuracy.
FYy— FErey—
.ccuv-cy 68.64% P’i:[':;‘“ 1099 Total Predictions 1601 Accuracy 71.89% P’S:i':l';"“ 1151 Total Prelctigns 1601
|terati0l'l 3: © Configure & Create @ Enhance @ simulate
Rule /' import Download Enhance ~ ] Accept P
Left — User accepted previous Al
suggestion and done further
edits, with 71.77% accuracy. .
Right — Al enhanced version o
based on user edits with 73.77% i 13 (™ W
accuracy.
Y S—— B s v by
.cl:umcy 7n77% P:::mns 1149 Total Predictions 1601 Accuracy 73.77% P’i:i':iz'ns 1181 Total Preg
Iteration 4: L © Configure @ Create @ Ehance @ Simulate
all Attributes Rule /' import Download Enhance v
Left - User accepted previous Al :
suggestion and set it as final ot
version. martakstatus
e— e

Tree Prediction Similariy
I High
Tree Structure Similarity

Low ———e High
B Curent Tree Accuracy.

. Accuracy 73.77% Correct Predictions 1181 Total Predictions 1601 .
2025-07-30 18:27 02

Figure A.4: Edit history snapshot from C15 on adult income task.
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A.5 Read-only Explanations

« high
o working-hours > 31
* low
« marital-status is married
* high
* has investment-gain
* low
education-level >12 « high
* marital-status is married
* low
» has investment-gain « high
e age >47
* working-hours > 50 * low
o low

Figure A.5: Read-only explanation for Adult Income Prediction Task.

« high
o living-area > 1386
* low
< high
* bathrooms >3 * high
« living-area > 2382
grade >8 * low
e living-area > 2047 * low
« bedrooms >3 « high
* bathrooms >2  living-area > 1476
* low
* low
Figure A.6: Read-only explanation for House Price Prediction Task.
« high
e age >57 * low
e max-heart-rate > 158
* high
e age >55
« high
« resting-blood-pressure > 158
max-heart-rate > 137 « cholesterol-level > 50 * low
* high
e high
e age >45 * low
¢ max-heart-rate > 131
* high

Figure A.7: Read-only explanation for Heart Disease Prediction Task.
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A.6 Examples of User Created Decision Tree Rules

* high
e working-hours > 30
* low
« marital-status is married
¢ high
e age > 30
E7 has investment-gain * low
 high
o working-hours > 25
o education-level >13 o low
o low
« high
 education-level >10

* low

e high

» education-level >8
E14 marital-status is married e low
« has investment-gain « high
o working-hours > 55
e age > 40 o low
o low
e high
e age > 38 « high

« working-hours > 43

* low
C26 education-level > 11

 high
e has investment-gain o high
o working-hours > 53
o low
* high
e working-hours > 31
o low
» marital-status is married
e high
 has investment-gain
e low
C1 8 education-level > 13
e high
e age >33
o low
» has investment-gain
« high
o working-hours > 43
o low

Figure A.8: Examples of user created decision tree rules on the Adult Income Prediction Task
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« high

e high
o living-area > 2200
» bedrooms > 4  high
e bathrooms >3
o low

high
E1 3 grade >7 "

» bedrooms > 3 « high
* bathrooms > 2

o low
o living-area > 2200
« high
o bathrooms > 2
» bedrooms > 3 o low
o low
» high
o high
e living-area > 2000
* bedrooms > 4 « high
o bathrooms >3
e low
E2 grade >8 « high
o high
e living-area > 1800 « high
» bedrooms > 3
o bathrooms > 2 o low
e age > 50
 high
« high
o living-area > 1733
 low
« high
grade >8 e age > 10
e bathrooms > 2 * low
* bedrooms > 2
o low
o low
« high
« high
o bedrooms > 4 « high
« bathrooms > 3
e living-area > 2127 « high
e age > 85
C1 6 o o low
living-area > 1687
« high
o high
» bathrooms >3 * bedrooms > 3
e age > 113 e low
° low

Figure A.9: Examples of user created decision tree rules on the House Price Prediction Task
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e high
e age > 50
e low
« high
E3 resting-blood-pressure > 165 « cholesterol-level > 151
o low
o cholesterol-level >75
« high
o resting-blood-pressure > 152
o low
e high
« high
« resting-blood-pressure > 150 « high
E6 cholesterol-level > 200 * cholesterol-level > 100
e age > 50 o low
e high
o cholesterol-level > 165
o low
. high
« high
e resting-blood-pressure > 160
e cholesterol-level > 103 < high
e max-heart-rate > 169
e low
C22 age > 49
« high
. high
e resting-blood-pressure > 170
e cholesterol-level > 69 o high
e max-heart-rate > 205
* low
L] high
o resting-blood-pressure >70 ¢ high
« cholesterol-level > 90
e low
C24 age > 50 « high
« high
e max-heart-rate > 150
e resting-blood-pressure > 70 e high
o cholesterol-level > 90
e low

Figure A.10: Examples of user created decision tree rules on the Heart Disease Prediction Task
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A.7 Survey for the User Study

Reading Rules

Decisions are commonly made using rules.

A rule is to be read from left to right, check the condition in each purple box, if it is satisfied---go to green branch,
if not satisfied---go to red branch.

For example, to decide if someone is old or young, one could use the following rule:

e Old
age >40
e Young

Which of the following statements are True about this rule (Multiple choice)?

O All Old people are over 50 years old.

[ If a person is older than 41 years, he/she is Old.
[ A 40 year-old person is Old.

[ A 35 year-old woman is Young.

Consider a more complex rule:

e High Income

age >40 e High Income
e Working Hours > 40
e Low Income

Which of the following statements are True about this rule (Multiple choice)?

O A 20-year-old working 35 hours a week is High Income.
[ I the person is young and does not work hard, he will likely be Low Income, otherwise, High Income
[ A 30-year-old working 50 hours a week is High Income.

[ only people over 40 can be classified as High Income.

Figure A.11: Tutorial on reading the rules and screening questions to check the users’ interpretation.
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Al Interface Tutorial

Your goal is to observe and understand how an Al System makes predictions, then use your understanding to
anticipate its behavior.
This tutorial is to familiarize you with the Al interface you will be using to achieve this goal.

This Interface consists 4 stage, as shown on the top bar: Configure, Create, Enhance, Simulate @.

Configure is where you can locate the attributes and configure the Al assistant:

1. Attribute List @: You can click on the attribute in this list to pick up and use in your rules, click again to drop.
2. Enhance Settings @, you can set the Al assistant's enhancement in 2 aspects:
1. Prediction Similarity: How similar should Al enhanced rules be with yours in terms of prediction behavior.
2. Structure Similarity: How similar should Al enhanced rules be with yours in terms of rule flowchart.

Create is where you can create and edit the rules with the following components:

1. Rule Canvas @:
1. Inside the purple box, you can drop an attribute on the first box, then type your value for this attribute in
the second box.
2. The two white box represents the decisions, type High/Low to make a decision, or drop an attribute here
to add a rule.

2. Al Enhancement ®), you are assisted by an Al to enhance your rules, it offers 2 types of enhancements:
1. Enhance Rule Flowchart: Al will enhance your rule structure, revise your attributes and their position.
2. Enhance Value: Al will keep your rule structure, revise your value for the attributes.

Figure A.12: Tutorial on the Al interface.
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Enhance is where you can check the Al enhancement, and compare it with your own:

1. Your Rules are shown on the left .
2. Al Rules are shown on the right ®.
3. Al edits are shown in the middle ®.

Rule /' impon  Dowess (e <) 8 Accert) )
o « aducationiewsl >9 =
o <hon < i
« martastaus s maried "
“low o >
~ martalstatus i married
= > < hon « has investment goin o s
« has investment goin « cducatonievel 12
“low o
8 Curent Tree Accuracy 8 Trained Troe Accuracy
Accuracy 67.02% Correct Predictions 1073 Total Predictions 1601 Accuracy 76.51% Correct Predictions 1225 Total Predictions 1601

Simulate is where you are required to observe and anticipate the Al behavior on different cases:

1. View a case with Attributes D and estimate the_Al Prediction by selecting Low/High @. This is not your
prediction.

2. The Al Rules @) will be available on the left, view the Al Rules, and estimate the_Al prediction, again.

3. View the Al prediction @, and review your answer to learn for future cases ®).

4. Go back to Create stage to revise the Al Rules as needed, and estimate the Al prediction, again.

 Flowchart @ User Simulation P 130 P 53
“
[r—— o(raim
<o r— M
e Yererer 3 {vg
sy ¥ ey
Llow ‘Your Final Prediction:
N Low (0) ) High (1)
-
Jotucntonievd >4
o Model Prediction: Low
P et 0O i
Jooatonton 514 Jio

Figure A.12: (continued)
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Income Prediction Tutorial

The Al predicts whether a person is high or low income based on these attributes:

Attribute Meaning

Age Age of the individual (in years)

Education Level Highest education level attained

Marital status Unmarried (single, divorced, or widowed) or Married
Investment Gain Whether the person has investment gains (yes/no)
Working Hours Number of hours the person works per week

Based on the attributes above one way to make decisions is with the following Guideline Rules:

. high
« education-level >13
o low
. i X o high
marital-status is married e age >30
o education-level >13 o low
« has investment-gain
o low

o low

Note that the Al Tool may use different rules than the rules above to try to be more accurate for specific cases.
But be careful that the Al may be wrong sometimes, so use your judgement.

Which of the following are True about the rules above (Multiple choice):

D If a person is married and has education < 13, he will be classified as "low".
[ All married individuals are classified as "high".
[ For unmarried individuals with no investment-gain, the prediction is "low" regardless of education or age.

O For unmarried individuals with investment-gain and education > 13, the final decision depends on age.

Figure A.13: Tutorial on the Adult Income Prediction Task and screening questions to check the users’ interpretation.
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House Price Prediction Tutorial

The Al predicts whether a house is high or low price based on these attributes:

Attribute Meaning

# Bedrooms Number of bedrooms in the house

# Bathrooms Number of bathrooms in the house

Living Area Size of the indoor living space (in square feet)

Grade Overall construction and design quality rating (4 = lowest, 13
= highest)

Age Number of years since the house was built.

Based on the attributes above one way to make decisions is with the following Guideline Rules:

o low
e living-area > 2451
e bedrooms > 4 o high
e living-area >1717
o low
grade >9
e living-area > 2928 e high
e living-area > 2718 e age >28
o low
o low

Note that the Al Tool may use different rules than the rules above to try to be more accurate for specific cases.
But be careful that the Al may be wrong sometimes, so use your judgement.

Which of the following are True about the rules above (Multiple choice):

d If grade < 9, the house is classified as low, no matter the values of other attributes.
[ All houses with living-area > 2928 are classified as high.

[ A house of grade 7, with a living area of 2800, and 20 in age is classified as high.
O A house of grade 10, with a living area of 2000, 3 bedrooms is classified as high.

Figure A.14: Tutorial on the House Price Prediction Task and screening questions to check the users’ interpretation.



CHI 26, April 13-17, 2026, Barcelona, Spain Chen, Bai, Fang, and Lim

Heart Disease Risk Prediction Tutorial

The Al predicts whether a person is high or low risk of heart disease based on these attributes:

Attribute Meaning

Age Age of the individual (in years)

Resting Blood The blood pressure measured while a person is calm, relaxed,
Pressure and not moving, usually sitting or lying down.

Cholesterol Level Cholesterol in the blood (mg/dL)

Max Heart Rate Highest heart rate reached during exercise

Based on the attributes above one way to make decisions is with the following Guideline Rules:

e age >50
o low
resting-blood-pressure > 165 o low
o cholesterol-level >75 » high

o resting-blood-pressure > 152
o low

Note that the Al Tool may use different rules than the rules above to try to be more accurate for specific cases.
But be careful that the Al may be wrong sometimes, so use your judgement.

Which of the following are True about the rules above (Multiple choice):

O All people older than 60 have high risk of heart disease.
[ Resting blood pressure of 150 indicates this person have low risk of heart disease.
O A man of 60 years old, resting blood pressure 155, cholesterol level 60, is classified as high risk.

[ Someone with a resting blood pressure of 160 is of high risk, no matter what the other attributes.

Figure A.15: Tutorial on the Heart Disease Prediction Task and screening questions to check the users’ interpretation.
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Your goal is to observe and understand how an Al System makes predictions, then use your understanding to
anticipate its behavior.

You will start by defining a Rule for this scenario, the Al will use your Rule to guide its prediction.

You will make decisions for multiple cases, and for each case you will:

1. View a case with Attributes and estimate the Al Prediction. This is not your prediction.
2. View the Al Rules, and estimate the Al prediction, again.
1. You may also view the Guideline Rules for the decision task, but note that the Guideline Rules and the
Al may be inaccurate.
3. View the Al prediction, and review your answer to learn for future cases.
4. Revise the Al Rules as needed, and estimate the Al prediction, again.

Figure A.16: Task description for Editable and CoExplain explanation.

Your goal is to observe and understand how an Al System makes predictions, then use your understanding to
anticipate its behavior.
You will make decisions for multiple cases, and for each case you will:

1. View a case with Attributes and estimate the Al Prediction. This is not your prediction.
2. View the Al Rules, and estimate the Al prediction, again.
1. You may also view the Guideline Rules for the decision task, but note that the Guideline Rules and the
Al may be inaccurate.
3. View the Al prediction, and review your answer to learn for future cases.

Figure A.17: Task description for Read-only explanation.

Do you agree or disagree with the following statements:

Neither

Strongly Somewhat agree nor  Somewhat Strongly

disagree Disagree disagree disagree agree Agree agree
| am familiar with this
scenario. o o o O o O o
The rule building tool was
easy to use. o O o O o O o
The Al enhancement was
easy to use. o o o O o O o
| agree with the Al's
enhancement suggestions. o o o o o O o
It was easy for me to
understand the Al rules. o O o O o O o
| understand and can @) ) @) e) @) O ®)

anticipate the Al's behavior.

Figure A.18: Likert Scale for perceived rating.
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