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Abstract—Fleet management has achieved great success 

benefiting from the application of deep reinforcement learning 

(DRL) in recent years and has yielded many successful 

commercial applications like ride-hailing services, whose basic 

goal is to efficiently manage the fleet of vehicles to meet the 

demand separated temporally and spatially. However, research 

that provides insight about how existing methods succeeded in 

dealing with massive agent interactions from a multi-agent 

perspective is still missing. In this paper, we review the RL 

methods of order dispatching and vehicle re-positioning in 

recent years, and classify them from the perspective of multi-

agent reinforcement learning (MARL). We provide a 

comparison of vehicle-based methods, grid-based methods, and 

order-based methods, along with the popular datasets and open 

simulators. Afterward, we discuss several challenges and 

opportunities for the application of DRL in this domain. 

Keywords- multi-agent reinforcement learning; fleet 

management; ride sharing; order dispatching; vehicle re-

positioning; 

I.  INTRODUCTION  

As a well-investigated programming problem, fleet 
management aims to manage the fleet of vehicles to meet the 
customers’ requests distributed temporally and spatially, 
which has shown a wide range of application prospects 
because it involves different types of vehicles such as 
commercial delivery vehicles, taxis, locomotives, truck 
tractors. Many of them operate in a demand-responsive mode, 
i.e., the demands for services are not known beforehand and 
the fleet has to be deployed and managed in real-time [1], 
which brings great challenges to fleet management. 

According to the previous surveys [1, 2], the modeling and 
algorithm around order dispatching, vehicle routing, and re-
positioning, are the main topics in fleet management. Order 
dispatching refers to matching the customers’ requests to 
available vehicles. Vehicle routing, also known as vehicle 

routing problem (VRP), focuses on the route programming 
between targets under given constraints. Vehicle re-
positioning is to guide idle vehicles to specific locations in 
anticipation of fulfilling more requests in the future [3].   

Benefiting from the rapid development of artificial 
intelligence, Deep Reinforcement Learning (DRL) is 
gradually playing a more and more important role in 
Intelligent Transportation Systems (ITS) and has been proved 
to be essential in solving the problems of fleet management 
[2, 3]. Since the decision-making during the fleet management 
process is sequential and relies on the state and time, it could 
be modeled as a Markov Decision Process, which could be 
solved by reinforcement learning algorithms [3]. To achieve 
efficient vehicle allocation, order dispatching and vehicle re-
positioning could be improved and optimized with different 
deep reinforcement learning algorithms. Most papers implied 
and developed model-free algorithms including DQN, PPO, 
REINFORCE, while some model-based algorithms are 
employed as well. 

A multi-agent system is a group of autonomous, 
interacting entities sharing a common environment, which 
they perceive with sensors and upon which they act with 
actuators [4]. Since the fleet management system can be 
typically modeled as a multi-agent system, multi-agent 
reinforcement learning (MARL), which provides a more 
natural perspective to deal with the distributed agents, is 
playing an increasingly significant role in this field. This 
method is based on DRL but focuses on its identical 
challenges, e.g., the formal statement of the multi-agent 
system’s learning goal [4]. 

This survey provides a comprehensive analysis on how 
reinforcement learning helps address the problem of fleet 
management. We want to focus especially on the MARL 
aspect, as well as mentioning several innovative and 
instructive ideas based on MARL. Chapter 2 mainly focus on 
the basic concepts and advanced algorithms in reinforcement 
learning. The core of this survey lies in Chapter 3 and 4. First 
we break the problem of fleet management into three sub-



problems --- order dispatching, vehicle routing and vehicle re-
positioning. In each section of the sub-problems, we 
categorize the investigated methods into three groups, the grid 
based algorithms and vehicle based algorithms as well as other 
special methods. Non-deep reinforcement learning methods 
already provided some sufficiently efficient solution for 
vehicle routing problem, resulting few DRL methods are 
applied on vehicle routing. Thus in this paper we only focus 
on the other two problems. 

Due to the underdevelopment of multi-agent 
reinforcement learning in the past years, previous surveys 
mostly focus on the single-agent view, thus not paying enough 
attention to multi-agent methods. In the section of MARL of 
fleet management, we further classify the methods into three 
categories according to their selection of agents, which are 
grid-based methods, vehicle-based methods and other special 
methods at last. For each of the methods included, we analyze 
their performance and their unique metrics. In the final chapter 
of our survey, we provide an insightful analysis of currently 
confronted challenges as well as possible development 
directions of this field. 

II. REINFORCEMENT LEARNING 

The basic concepts and advanced algorithms applied in 
fleet management system using reinforcement learning are 
briefly explained below. This paper focus on multi-agent 
solutions, which will also be introduced. 

A. Single-agent RL  

Due to the feature that the decisions made by a fleet 
management system are sequential and they depend on real-
time environment situations and time, the Markov decision 
process could be applied to solve the problem [3]. 

A Markov decision process could be represented as a tuple 
< 𝑆, 𝐴,𝑃, 𝑅 >  where 𝑆  represents for the set containing 
possible states of the environment, 𝐴 represent for the set of 
possible actions of agents, 𝑃 represent for the transition 
probability function, the R represents for the reward function 
[4]. The agent takes the current environment state 𝑠𝑡 ∈  𝑆 at 
step 𝑡 and then decide about the next action 𝑎𝑡 ∈  𝐴, which 
lead to a transition from 𝑠𝑡  to 𝑠𝑡 + 1 in step 𝑡 +  1 because 
the agent performing action interact with the environment. 
The reward 𝑟𝑡  is produced by reward function after agent 
takes action at [5]. The action chosen relies on the policy 
function 𝜋(𝑠): 𝑆 →  𝐴. The sequential process ends when it 
achieves a terminal state. The agent is trained with different 
algorithms to achieve the maximum cumulative reward of the 
process [3].  

The state-value function 𝑉𝜋  indicates the expected 
cumulative reward starting at a specific state under policy 𝜋: 

𝑉𝜋(𝑠) = 𝔼𝜋 (∑  

𝑇

𝑡=0

𝑅𝑡 ∣ 𝑠0 = 𝑠)                  (1) 

where 𝑅𝑡 =  𝛾
𝑡𝑟𝑡  and 𝛾  is the discount factor, which 

indicates importance of the future reward. 
The action-value function 𝑄π , similarly, indicates the 

expected cumulative reward starting at state 𝑠, taking action a 
under policy 𝜋 [3, 6]: 

𝑄𝜋 = 𝔼𝜋 (∑  

𝑡=𝑇

𝑡=0

𝑅𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎)             (2) 

The Bellman equations of value function are shown below, 
which indicates the relationship between the value of the 
current state and the value of its future states [3]. 

𝑉(𝑠𝑡) =∑ 

𝑎𝑡

𝑃(𝑠𝑡+1, 𝑟𝑡)(𝑟𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉(𝑠𝑡+1))        (3) 

With the model-based method, the decisions of action rely 
on predicting future states. With the estimated transition 
function and reward function, the action that could result in 
maximum value is computed by iterating the Bellman value 
equation [5]. Conversely, model-free methods cannot predict 
how the action they take changes the environment state but 
interacts with the environment [6]. However, they are more 
useful under complex environments where the reliable 
transition function and reward function are hard to estimate 
[2]. The policy and value function are learned from data. Thus, 
the model-free methods are more commonly used in fleet 
management. 

Value-based methods and policy-based methods are the 
two categories of model-free methods. In value-based 
algorithms, the value of a given state at step 𝑡 is estimated. 
The Q-learning is applied to learn the optimal actionvalue 
function, where the action-value function is iteratively updates 
by [3]: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + α(𝑟 + γ𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′) − 𝑄(𝑠, 𝑎)) 

(4) 

Whereas for the policy-based algorithms, the state-value 
pair is not required to be estimated, but they search for an 
optimal policy. A parameterized policy is chosen at first, and 
then the parameters in the policy are updated to maximize the 
value function [5]. 

B. Multi-agent RL  

However, the single-agent may face difficulties during 
working with the fleet management problems due to the nature 
of multiple drivers or grid cooperating to achieve the same 
goal. Thus, employing multiple agents for decision-making is 
a reasonable choice. The Markov decision process is 
generalized to the Markov game involving multi-agents. 
Markov game could be described as a tuple  <
𝑆, 𝐴1, … , 𝐴𝑁 , 𝑃, 𝑅1 , …𝑅𝑁 > , where 𝑆  is the finite set of the 
environment state, 𝑁 is the number of agents, 𝐴𝑖  is the finite 
set of the action space of agent 𝑖 , yielding 𝒜 = 𝒜1 ×…×
𝒜𝒩 is the joint action space, 𝑓: 𝒮 ×𝒜 × 𝒮 → [0,1] denotes 
the state function of transition probability, 𝑅𝑖 : 𝒮 × 𝒜𝒾 → 𝑅 
denotes the reward function of agent 𝑖. The policy of agent 𝑖 
is defined as π𝑖  :  𝒮  ×  𝒜𝒾 →  [0,1], yielding π :  𝒮  ×  𝒜 →
[0,  1]  as the joint policy. According to the definition, the 
transition of state is decided by the joint action of all the agent, 
therefore the expected return 𝑅𝑖

𝜋(𝑠) for agent 𝑖 depends on the 

joint policy 𝜋, 



𝑅𝑖
π(𝑠) = 𝔼 {∑γ𝑡𝑟𝑖,𝑡+1

𝑇

𝑡=0

}                          (5) 

where the 𝑟𝑖,𝑡+1 is the reward of agent 𝑖 in timestep 𝑡. The 

value function and the state-action function of each agent 
under joint policy π, initial state s and joint action 𝑎 =
[𝑎1, … 𝑎𝑁] could be evaluated with algorithms like DQL, in 
which the best performing policies of each agent could be 
discovered. 

III. REINFORCEMENT LEARNING FOR FLEET MANAGEMENT 

A. Order Dispatching 

In this section, proposed methods for order dispatching 
will be discussed from a MARL perspective. We will firstly 
give a problem statement of order dispatching in fleet 
management. The necessary mathematical formulation of the 
problem will be included. Then, the main challenges to the 
application of MARL in order dispatching will be discussed. 
After all, the proposed methods for order dispatching will be 
discussed from the perspective of MARL. These methods will 
be mainly organized by the different choices of agents. 

The Order dispatching module in fleet management, 
which is also learned as the online matching [3], is to best 
assign customers' requests to the available drivers in real-time. 
The geographical position of the available vehicles, the 
starting position, the destination of the unmatched orders, as 
well as their price given by the pricing module are provided 
as the input. Dispatching plans of how and when to match the 
orders and vehicles are expected to be given as the output. 

What is a “best” order dispatching ideally? Many metrics 
have been proposed to help form an optimization target.  

The metrics to be optimized can be roughly classified into 
short-term metrics and long-term metrics. The short-term 
metrics, e.g., minimizing the waiting time of the customer, 
maximizing the immediate income from the current order, can 
be optimized directly according to the distribution of orders 
immediately. The long-term metrics, typically the expected 
accumulated income of the rest of the day, is also related to 
the current decision, but cannot be learned immediately.  

Another classification of these metrics can be driver-
centric and customer-centric. From the driver's perspective, 
the ultimate goal is to maximize its income, or the in-service 
time, the order response rate as well. From the customer's 
perspective, the grade of service should be guaranteed by the 
platform, i.e., the waiting time should be minimized. 

These critics are not exclusive [7], e.g., reducing pickup 
waiting time also decreases the cancellation probability of an 
order. [8, 9] prefer maximizing Gross Merchandise Volume 
as the learning goal, while [10] prefers maximizing the 
accumulated driver income and order response rate. Since the 
orders will be canceled after a period of waiting, [11] 
considers the metric of maximizing the acceptance rate of 
orders as more prominent than the metric of minimizing the 
waiting time. 

The mechanism of how the orders are delivered to the 
drivers is also various. The simplest mechanism assumes that 
one vehicle is matched to one order, and the order will not be 

re-assigned to the others unless the driver refuses it, which is 
named as a one-to-one dispatching pattern in [11]. Another 
mechanism is that one order will be dispatched to many 
drivers, and the first driver who accepts it gets the order, viz. 
The driver can select one order to accept from a recommended 
order list provided by the platform, which is named as a one-
to-many pattern [12]. The most complicated mechanism is 
that, based on a one-to-many pattern, the driver can accept 
multiple orders, and complete them one by one, which is 
named as a many-to-many pattern [11]. Most researchers take 
the one-to-one mechanism as the model assumption. [11] 
implies that the additional complexity of mechanism 
assumption requires a more complicated design, which will be 
discussed in the later section. 

1) Multi-agent reinforcement learning challenges 

In order dispatching, the state 𝑠 ∈ 𝒮 can be defined as <
𝐷0, 𝐷𝑣 , 𝑡 >, where 𝐷0 is the distribution of orders, 𝐷𝑣  is the 
distribution of vehicles, t is the current timestep. Commonly, 
the map is discretized into hexagon girds, therefore the 
location of order or vehicle is expressed by the index of gird 
[13]. [14] applies a link-node-based micro-network 
representation, leveraging the heterogeneous traffic network 
topology.  Besides, it's necessary to append the timestep t into 
the definition since the distribution of orders or vehicles may 
strongly have a temporal characteristic, e.g., morning rush 
hour and evening rush hour. Therefore, the characteristic of 
the Markov Decision Process (MDP) can be guaranteed. 

       𝑃(𝒮𝑡+1 = 𝑠𝑡+1|𝒮𝑡 = 𝑠𝑡 , … , 𝒮0 = 𝑠0)    
= 𝑃(𝒮𝑡+1 = 𝑠𝑡+1|𝒮𝑡 = 𝑠𝑡)                       (6) 

The game in order dispatching is likely to be a fully 
cooperative game, where the platform aims to maximize the 
return of every agent without competition. Therefore, the 
reward 𝑅𝜋 of the system can be expressed as the sum of the 
reward of every agent 𝑅𝑖: 

𝑅π(𝑠) =∑𝑅𝑖
π(𝑠)

𝑛

𝑖=1

                            (7) 

In ride-hailing service or ride-sharing service, orders and 
vehicles can be generally viewed as homogeneous. Prior 
knowledge of order dispatching is quite abundant, e.g., the 
driver should pick a nearby order, therefore can be utilized to 
help the learning. Coordination between agents in order 
dispatching is quite necessary, which enables the 
improvement of global optimal dispatching based on 
cooperation. Thus, the agent should be aware of other agents 
and estimate their policy. The input of each agent can be 
global, i.e., each agent can observe the whole part of state 𝑠 ∈
𝒮.  

However, there are some challenges in MARL [4]. First, 
the curse of dimensionality, i.e., the exponential growth of the 
discrete state-action, brings not only heavy computational 
expense but obstacles to fit the prediction of state-action space 
from historical data of limited number. Second, 
nonstationarity arises because the best policy of each agent is 
changing resulting from the activation of other agents. Third, 
it's hard to specify a unified learning goal for the MARL 



system, because the agents’ returns are correlated and cannot 
be maximized independently. Forth, the coordination between 
agents is necessary, e.g., the action space of the agent depends 
on the action of other agents. We are interested in how these 
difficulties are solved or are avoided in the proposed method. 
While applying MARL into order dispatching, these 
challenges above become more specific and background-
related. We will mainly discuss how the MARL environment 
is modeled, i.e., what the agent is on behalf of and what the 
action means since it is decisive to the characteristic of the 
state-action space. Therefore, proposed methods will be 
classified and be discussed in the classification of agent 
modeling type. 

 

2) Vehicle-agent  
Modeling the vehicle as the agent can be intuitive. A 

typical method for order dispatching is the learning and 
planning approach [8, 9, 15]. The offline learning step 
performs Temporal-Difference (TD) update to learn the 
evaluation of the spatiotemporal state, while the online 
planning step uses these values to compute a bi-partite graph 
matching problem. It makes a simplification and takes the 
single-agent perspective to solve this problem, viz. The state 
𝑠 =< 𝑔𝑣 , 𝑡 > contains the region index 𝑔𝑣 where the agent is 
located in and the timestep 𝑡. Correspondingly, the action 𝑎 =
< 𝑔𝑠𝑟𝑐 , 𝑔𝑑𝑒𝑠𝑡 >  represents an order which starts in 𝑔𝑠𝑟𝑐 
region, and ends in 𝑔𝑑𝑒𝑠𝑡 region. Therefore, the state 𝑠 which 
performs the action 𝑎 will transform to the next state 𝑠′ =<
𝑔𝑑𝑒𝑠𝑡 , 𝑡 + Δ𝑡 > , while Δ𝑡  is the expected time cost for 
transportation from 𝑔𝑣 to 𝑔𝑠𝑟𝑐, then to 𝑔𝑑𝑒𝑠𝑡.  

To be more detailed, in the planning step, a dispatching 
time window, where unmatched orders and available drivers 
are pooled and matched simultaneously, is created. In the 
dispatching window, suppose there are 𝑛  orders and 𝑚 
available drivers. Orders and drivers can be formulated as a 
bipartite graph, and the edge 𝑤𝑖𝑗 , representing a potential 

matching, is evaluated as a reward for assigning order 𝑖  to 
driver 𝑗. The evaluation of reward is a state-action value given 
by the Q-network trained in the learning step. Therefore, the 
dispatching policy is modeled as a Combinatorial 
Optimization problem and can be solved by some classic 
matching algorithm, e.g., the Hungarian Method (a.k.a. KM 
algorithm). In the learning step, the matching is modeled as an 
MDP, and single-agent reinforcement learning is applied to 
acquire the evaluation of state-action value. All the agents 
share the same policy. The application of Deep Reinforcement 
Learning (DRL) enables the model to generalize beyond the 
historical training data, as well as to leverage knowledge 
transfer across multiple cities (Transfer Learning) [9, 15]. 
Batching more orders and drivers enables a more global 
optimization, but results in an expense of longer order 
response time. 

 
Figure 1. bipartite graph modeling for order dispatching 

 
One of the challenges to the learning and planning 

approach is that it cannot reflect the fluctuation of supply and 
demand in real-time. The estimation of spatiotemporal state-
action value is based on historical data, without the 
involvement of the current transition of environment. This 
challenge can be reduced by redesigning the structure of the 
Q-network [15, 16].  

What makes the single-agent reinforcement learning 
practical in the multi-agent environment is that the learning 
and planning approach extracts the necessary interaction 
between vehicles into the planning procedure, leaving the 
learning procedure undifferentiated to every agent. It makes 
full use of the homogeneity of agents and simplification is 
made. The curse of dimensionality is avoided since the finite 
set of state 𝒮 and action 𝒜 have limited size. Nonstationarity 
in training is also avoided, as the policy of the agent is 
independent. The dispatching policy in combinatorial 
optimization is called collectively greedy [9]: 

argmax
𝑎∈𝒜

∑ 

𝑠∈𝒮

𝑄(𝑠, 𝑎(𝑠))                       (8) 

where 𝑄(𝑠, 𝑎(𝑠)) denotes a feasible edge in the bipartite 

graph. It provides an optimization objective to the system, and 
the constraints of “one order can only be assigned to one 
driver”, etc., consist of the coordination between agents.  

However, the learning and planning approach does not 
produce many advantages of MARL, like the inherent 
robustness and parallel computational efficiency which is 
based on the distributed nature, because planning procedure 
highly relies on centralized control. [17] also models each 
vehicle as the agent, but takes the complex interactions 
between drivers and orders into consideration by applying the 
Mean Filed MARL method. Instead of giving centralized 
control to all the vehicles and letting them share the same 
policy, it assumes that each agent makes decisions 
independently. By comparison, the centralization of the 
learning and planning approach has the potential “single point 
of failure” [18], i.e., the failure of the centralized authority 
control will fail the whole system. Also, a heterogeneous 
agent setting with individual-specific features is supported.  

The design of state and action space is similar to the 
learning and planning approach, but jointly in the multi-agent 
environment, viz. The state is denoted as 𝑠 =<
𝑔𝑣,1, … , 𝑔𝑣𝑛 , 𝑡 > , while the action is denoted as 𝑎 =<



𝑎1, … , 𝑎𝑛 >. The reward of each agent is, therefore, dependant 
on the joint action of all the agents. The nonstationarity in 
training arises. For each agent, the training of its state-action 
value is hard to converge because the policy of other agents is 
also changing in this procedure. [17] adopts the mean field 
approximation to simplify the local interactions by taking an 
average action among neighbourhoods [19]. The learning 
target of each agent is to maximize its cumulative reward, 
instead of the global reward, while the demand-supply gap is 
defined as a constraint. The mean-field method lessens the 
curse of dimensionality, making the additional cost for the 
growth of the number of agents acceptable.  

Since the fully distributed order-driver matching decisions 
are made independently without dispatching time window, the 
matching of order is performed asynchronously to avoid 
matching collision, viz. The matching is competitive and the 
first driver who sends the matching request to the platform 
will get the order dispatched. It also acts as the coordination 
between agents at the minimum level. The matching collision 
is intrinsically the problem that dynamic action space is 
dependent on the behaviour of other agents. 

3) Grid-agent  

[20, 21] prefer to model the discrete region grid as the 
agent. They regard the grid as the manager of vehicles and 
unify the order dispatching problem and re-positioning 
problem into the same form, i.e., matching the orders and 
vehicles inside the grid, and distributing the redundant 
vehicles to the neighbour girds. Specifically, re-positioning 
the vehicle to neighbour grids or staying at the current grid is 
treated as fake orders, which is a trick to unify the two tasks 
in form. Self-organization techniques are implemented to 
decrease the waiting time as well as to enhance the utilization 
rate of vehicles. It models the order dispatching as a large-
scale parallel ranking problem, instead of a sequential 
decision-making problem.  

 A fundamental denotes of the state can be expressed as 
𝑠 =< 𝑁𝑣 , 𝑁𝑜 >, where inner elements represent the number 
of available vehicles, number of unmatched orders.  

 
Figure 2. dispatching and re-positioning in gird-agent 

modeling environment 
[21] applies a learning-and-planning-like method. [20], 

however, integrates a geographical hierarchy reinforcement 
learning (HRL) to decompose the dispatching in sub-tasks. 

District of grids is modelled as the manager agent, raising and 
delivering sub-tasks to the worker agents, i.e., small gird. The 
spatiotemporal balance of supply and demand corresponds to 
the tasks of higher level, while the matching of orders and 
vehicles corresponds to the lower. The manager's action is to 
generate goals for its workers, while the worker's action is to 
provide a ranking list of relevant real orders [20].  

 

4) Order-agent  

Suppose the platform runs in the mechanism that 
recommends the most suitable orders to the driver and allows 
the driver to choose from some selections, the dispatching 
model based on one-to-one matching assumption cannot work 
well. Taking the rejection behaviour of drivers into 
consideration helps to adapt the demand of one-to-many or 
many-to-many dispatching pattern, i.e., an order is dispatched 
to many vehicles [11]. The idea of order-agent, i.e., modelling 
the order as the agent, comes from considering the driver’s 
rejection behaviour. It provides another perspective to see the 
dispatching problem.  

In [11], the order is defined as the agent, while selecting 
the matching vehicles is defined as the action. [11] proposed 
a learning and planning solution, which is quite similar to the 
mentioned approach before. It also has an offline learning step 
to learn the state-action value, and an online planning step to 
give centralized dispatching decisions to all the orders. In the 
learning step, historical data is used to train for predicting the 
expected response time in a one-to-one dispatching situation, 
i.e., how the response time will change if the order is 
dispatched to different vehicles. Reinforcement learning is 
applied to solve such a response process. In the planning step, 
the probability distribution of response time is involved in the 
reward function. Orders and vehicles are treated as nodes in 
bipartite graph, and combinatorial optimization is also utilized 
to maximize the weighted matching, which is discussed in the 
last section. [22] also defines the order as the agent and takes 
a learning-and-planning-like solution under the one-to-one 
matching assumption. However, it defines the action as 
whether to enter the matching pool or to be delayed to the next 
turn, expecting a nearer driver will be available in the next 
timestep. 

B. Vehicle Re-positioning 

In this section, we are focusing on reinforcement learning's 
application in the problem of vehicle re-positioning which is 
also a sub-problem of fleet management [23]. In the first part 
of this section, we present the problem statement of vehicle 
re-positioning. Next, we put our attention on one of the most 
important aspects of vehicle re-positioning which is 
demand/supply predicting, we introduce some of the 
advanced methodologies developed to address this problem. 
In the third part, we are going to stress the use of multi-agent 
reinforcement learning to help solve the problem of vehicle 
re-positioning, by categorizing the different research papers 
into two distinct classes according to their two main choices 
of bases of their reinforcement learning agents, we offer a 
thorough insight of their pros and cons, state and action space 
formulation, relationships between agents, etc. respectively. 
Based on the two categories mentioned above, we are also 



introducing some of the basic algorithms designed for this 
problem as well as their improvements. At last, we mention 
several innovative ideas which are different from the popular 
methods and are considered to have offered promising 
directions for future research.  

In a fleet management system, vehicle re-positioning is 
often considered in parallel with order dispatching. Most 
literatures develop two different systems at the same level for 
order dispatching and vehicle re-positioning respectively. 
Specifically, after the execution of order dispatching, the 
vehicle re-positioning system operates on every idle vehicle 
that was not assigned an order and assign them a location to 
go before they receive an order. To be effective, vehicle re-
positioning systems generate the location according to 
predicted future demand/supply gap, such that the assigned 
vehicle plays the role of taking some pressure off the 
exceeding supply of zone it was leaving as well as making up 
the insufficient supply of its destination zone. 

1) Prediction  
In order for the vehicle re-positioning system to act 

effectively as mentioned above, literatures use real-world 
collected data to train their predictor. These datasets usually 
include the specific time and location of every order, the 
trajectory of different drivers as well as their status of 
occupied or not. Since the actions of dispatching and re-
positioning will change the environment from what it is 
supposed to be from the data sets, at most time researchers 
needs to generate new data based on the given real-world 
records. 

However, since the reinforcement learning methods in 
vehicle re-positioning are all making use of MDP and its 
property that given the present, the future does not depend on 
the past. 

                           𝑃(𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡 , … , 𝑆0 = 𝑠0)
= 𝑃(𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡)                       (9) 

So that instead of building a separate system of predicting 
the future demand and supply information, literatures usually 
let the reinforcement learning system of re-positioning to 
handle the predicting job itself. As when the reinforcement 
learning algorithm is learning how to make appropriate 
decisions given current states, it is also learning the Markov 
Property of the environment, which is to say that it makes 
decisions based on the given current state 𝑆 and a learned state 
transition probability 𝑃 . This approach can be classified as 
agent learns a model of the environment dynamic. On the 
other side, researchers also proposed a different way of 
building a data generator outside the agent [24, 25, 26, 27, 28]. 

 Among these proposed approaches, [24, 26, 27] used 
convolutional neural networks (CNN) to generate the demand 
information in a spatio-temporal manner. [25] made use of the 
recurrent neural networks (RNN) to help predict future 
demand in a sequential manner. [28] utilized the recently 
developed graph neural networks (GNN) which uses 
neighbour information to better formulate demand in a 
contextual way. Using a model predictor outside the 
reinforcement learning algorithm can help our agent reduce its 
massive state space thus improving its scalability, as usual, 

learning algorithms learn to re-position vehicles by acquiring 
not only demand/supply information but also weather, time 
and other complex external factors [28]. However, by using 
an extra predictor, we can contract external factors into a small 
state space and predict the demand information as well. 

2) MARL algorithms 

 Recent researches on vehicle re-positioning are showing 
a trend of division on the choices of agents. In consistent with 
the traditional methods of re-positioning vehicles without the 
help of reinforcement learning, many research papers show a 
way of abstracting vehicles as reinforcement learning agents 
which are often considered homogeneous [28, 29, 30, 31].  
While there are also many researchers who choose to 
represent the demand and supply in a grid-based manner, 
which is to segment the region used to conduct the experiment 
in a square or hexagonal way. In the grid system, each grid is 
an agent and is treated as heterogeneous. [20, 21, 32] The 
prime distinction between the two approaches of modelling 
agents is the difference in the executor of the actions. In a grid-
based algorithm, the action is often indicating how many 
vehicles the grid needs to re-position. While in a vehicle-based 
algorithm, the action indicates the location the vehicle needs 
to be re-positioned. 

3)  Grid-based algorithms 

As mentioned above, literatures use a demand predictor to 
assist the agent in making decisions, since many researches 
abstract the agents into grids, they simplify the prediction 
module into a gird-based prediction. The most obvious 
advantage of grid-based algorithms against vehicle-based 
algorithms is that its low computational complexity. The 
number of grid agents that a city usually is segmented is about 
100 ~ 400 which is much smaller than that of vehicle-based 
algorithms. Moreover, according to the grids' location as well 
as their functions, the grids can be classified into several 
classes and thus have their unique neural network to maintain. 
In this manner, the grid-based algorithms treat the grid agents 
as heterogeneous as different grids have their own 
geographical features and behavioural patterns.  

 The state space, at most time, is all the demand and supply 
information on the map of each grid.  

𝑆i = ⟨𝑖, 𝐷0, … , 𝐷𝑛, 𝑆0, … , 𝑆𝑛⟩                  (10) 

This is the simplest but most often used representation of 
state space of grid-based algorithms, indicating that in a grid 
system containing 𝑛 grids, the state of grid 𝑖 is made up of the 
id of current grid, the number of orders that has not been 
dispatched denoted as demand, as well as the number of idle 
vehicles denoted as supply from 𝑔𝑟𝑖𝑑_0 to 𝑔𝑟𝑖𝑑_𝑛 [32]. This 
design of state space is sufficient in information needed by 
reinforcement learning algorithms to generate dispatch 
actions. However, a vector consisting (2𝑛 + 1) elements can 
sometimes be too large for normal reinforcement learning 
algorithms, such a large state space can affect the scalability 
of the algorithm which is a crucial factor in multi-agent 
systems. To solve the problem of scalability while not 
compromising the efficiency of the algorithm, [28] proposed 



a contextual-based state representation. In a square-based grid 
system, the state space for 𝑔𝑟𝑖𝑑_𝑖 is designed as follows. 

𝑆𝑖 = ⟨𝑖,𝐷𝑖 , 𝑆𝑖 , 𝐷𝑛_1, 𝑆𝑛_1, … , 𝐷𝑛_8, 𝑆𝑛_8⟩           (11) 

The State representation in this setting is composed by the 
grid id 𝑖, the number of demand and supply for its neighbour 
grids ranging from 1 to 8 denoted as 𝑔𝑟𝑖𝑑_𝑛. They proposed 
that the information provided by its neighbour grids for the 
current grid to make re-position actions is sufficient enough in 
a contextual manner. Since in literatures a re-position action 
usually moves a taxi to the neighbour grids of its location, 
after using a GNN which will pass the neighbour grids 
features into the current grid's when doing prediction on the 
demand, the contextual way of giving only neighbour 
information performed well in experiments. 

 One possible design of the action space is a single ratio, 
indicating how much vehicle of the current grid agent needed 
to be re-positioned or to be added [21]. However, this design 
of the action space only provides a rough description of the 
amount of re-positioning while ignoring the direction. Thus, 
this design of one single ratio need to operate in cooperation 
with an extra matching function, which combine the Source 
Grids that re-position out of itself with the Sink Grids that 
needs extra vehicles together using a bipartite graph 
combinatorial optimization problem. This seems to be a bit 
complex and unnecessary compared with the more commonly 
used design. The action space, could also be designed similar 
to the state space. As mentioned above, a grid agent can only 
move its vehicles to neighbour grids. So, if it is in a square 
grid system, the action should be a vector of nine elements 
which represent the grid itself and its eight neighbours. This 
design outputs a vector of nine elements as follows. 

𝑎𝑖 = ⟨𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8⟩               (12) 

Where each element indicates a ratio of the number of 
vehicles in current grid and by numbering the nine grids, we 
set 𝑟4  to be the ratio of vehicles that needs to stay in their 
current grid and the other elements suggest the amount of 
vehicles to be moved to neighbour grids. 

 The reward in a vehicle re-positioning system should 
reflect the efficiency of the action in balancing demand/supply 
the gap. For a grid system, an agent grid's goal is set to balance 
its own demand and supply to the utmost extent. Thus, its own 
information of demand and supply can be used to formulate 
the reward function without using any other information of the 
others [21]. 

𝑟𝑡
𝑖 = 1 −

|𝑁𝑢𝑚𝑑
𝑖 − 𝑁𝑢𝑚𝑠

𝑖 |

max{𝑁𝑢𝑚𝑑
𝑖 ,𝑁𝑢𝑚𝑠

𝑖 }
                   (13) 

The design of reward varies between papers and above is 
one possible approach which reflects the equilibrium degree 
of the agent 𝑔𝑟𝑖𝑑_𝑖. To maximize the reward, the agent has to 
minimize the gap between demand and supply while keeping 
as much vehicles and orders in its region.  

 The design and usage of a grid system to model agent in 
general is quite a simplification of the real-world dynamics. It 

reduces computational complexity tremendously and has high 
scalability due to its small number of agents and simple 
representation of vehicles and orders. However, it 
compensates many detail information in order to achieve its 
simplicity. For example, the grid system treats the supply 
information as a number of vehicles, which dropped the exact 
location of each vehicle aside. The location for each order is 
also blurred [32]. What's more, the agent's action only 
determines how much vehicles to re-position while not 
considering the difference between drivers which might affect 
their willingness to go or to stay. Beside the problem of not 
being detailed enough, the grid system for vehicle re-position 
provides a handy environment to test new algorithms. 

4)  vehicle-based algorithms 

 Another formulation of agents in solving vehicle re-
position problems using multi-agent reinforcement learning is 
vehicle-based agents.[28, 29, 30, 31] The vehicle-based 
algorithms, differs a lot from the grid-based algorithms, 
instead of maintaining multiple neural networks for each 
agent as the grid-based algorithms, vehicle-based algorithms 
usually share the parameters between agents and thus 
maintaining only one or a small number of neural networks 
after the classification on the types of vehicles. Recent 
researches treat the vehicles as homogeneous and are not 
paying special attention to the classification of agents, which 
makes these algorithms different from the heterogeneous grid-
based algorithms. 

 However, the vehicle-based algorithms still have some 
similarities with the grid-based algorithms in its basic 
elements. In most research papers using a vehicle-based 
system, a grid-like segmentation of the map is widely applied. 
This is for the convenience of predicting the demand 
information as well as the management of vehicle agents. In a 
vehicle-based algorithm, grids are used to store the specific 
information of orders and vehicles, they are also crucial 
factors when designing the state space for vehicle-based 
algorithms. 

 The design of the state space is quite similar to that of 
grid-based algorithms. Like a grid system, the optimization 
target is to balance the demand and supply between the grids, 
thus in most papers, the design of the state space is based on 
the grid information. The design used in [28] can still be used 
in a vehicle-based manner, which only take neighbour 
information into consideration. However, like what was 
considered a global view in grid-based algorithms, [30] 
proposed a global state space design. 

𝑆 = (𝑟𝑗 , 𝑠𝑗
′, λ𝑗   for all  𝑗 ∈ �̅�)                    (14) 

The above equation indicates that the state is represented 
by 𝑟𝑗  which is the number of idle vehicles in 𝑔𝑟𝑖𝑑_𝑗 , the 

availability of in-service vehicles in 𝑔𝑟𝑖𝑑_𝑗 which is denoted 

as 𝑠𝑗′  and the predicted demand around the grid denoted as 𝜆𝑗. 
This is slightly different from the global view in grid-based 
algorithms in that it has an element of 𝑔𝑟𝑖𝑑_𝑗 which is taking 
into the consideration of the empirical probability of a vehicle 
be assigned to a new request based on simulation results. 
However, in real world data, the demand and supply gap 



depend on spacial and temporal information, so researchers 
believe the agents should also learn to make decisions based 
on spatial and temporal information, not only on the amount 
of global demand or supply. [29] proposed a different 
representation of state space which combine the global state 
together with spatial temporal information together. 

𝑠𝑡
𝑖 = [𝑠𝑡 , 𝑔𝑡]                                   (15) 

Where the state of 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑖 at time 𝑡 is a concatenation of 
the global state 𝑠𝑡  containing the spacial distribution of 
available vehicles and orders as well as current time 𝑡 (using 
one-hot encoding) and the one-hot encoding of the grid ID 𝑔𝑡. 
After all, the state space should always provide the demand 
and supply information to our agent, while the spacial and 
temporal information are optional. 

The action space of vehicle-based algorithms is totally 
different from that of grid-based algorithms because the entity 
of executing the action has changed. Since every vehicle is an 
independent agent, they can make their own decisions of 
which neighbouring grids to go or to stay. The most popular 
design of action space is merely a number indicating the 
destination grid [28, 29]. Where the action is extracted from 
the output of the neural network which is a probability vector 
noting the possibility of going to a certain neighbouring grid, 
the length of the vector is 9 for a square grid system and 6 for 
a hexagonal grid system. After extracting the action by 
applying a 𝑚𝑎𝑥  operator on the vector in an exploitation 
manner, we can get the index of the grid for the vehicle to go 
to. Also, in some paper the action is formulated as certain 
directions like {𝑁𝑜𝑛𝑒, 𝑁𝐸, 𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊,𝑊,𝑁𝑊,𝑁} , which 
can be treated exactly as the index manner of representation. 

The reward design has to reflect the quality of the re-
position action of current agent. Like in a grid-based 
algorithm, no matter what kind of agent the algorithm uses, 
the optimization goal is always set to balance the demand and 
supply of both the Source Grid and the Sink  Grid [21]. One 
design of reward provided by [28] is to calculate the reward 
of a re-position action conducted at time 𝑡 − 1 a time step 
later, which only use demand and supply information of its 
leaving grid and destination grid at time 𝑡 − 1. 

   ω𝑧𝑖 =
𝑃𝑧𝑖

𝑡𝑗−1

𝐷𝑧𝑖

𝑡𝑗−1
                                     (16) 

  

𝑟𝑡 =

{
  
 

 
 
 

 

 5    0 ≤ 𝜔𝑧𝑖 ≤ 1 and 𝑖 = 𝑔

−5    0 ≤ 𝜔𝑧𝑖 ≤ 1 and 𝑖 ≠ 𝑔

1

𝜔𝑧𝑖
    𝜔𝑧𝑖 > 1 and 0 ≤ 𝜔𝑧𝑔 ≤ 1

  0    𝜔𝑧𝑖 > 1 and 𝜔𝑧𝑔 > 1 and 𝑖 = 𝑔

−𝜔𝑧𝑔     𝜔𝑧𝑖 > 1 and 𝜔𝑧𝑔 > 1 and 𝑖 ≠ 𝑔

        (17) 

The 𝜔𝑧𝑖 is a fraction of supply over demand at time step 

𝑗 − 1  of  𝑔𝑟𝑖𝑑𝑧𝑖 , the following reward at time step t is 

determined by the ratio of supply/demand of the Source Grid 

and the Sink Grid and also taking consideration of the case 
that the vehicle decided to stay rather than re-position. 
Further, another design of reward function that does not 
depends on the 𝑆𝑜𝑢𝑟𝑐𝑒 𝐺𝑟𝑖𝑑 was proposed by [29]. In their 

paper, the individual reward 𝑟𝑡
𝑖. 

For the i-th agent associated with the action 𝑎𝑡
𝑖  is defined 

as the averaged revenue of all agents arriving at the same grid 
as the i-th agent at time 𝑡 + 1. This is an example of using 
vehicle revenue as the re-position rewards. Actually, the 
optimization goal of balancing demand and supply is proved 
to be in parallel with that of getting the maximum revenue for 
each agent. 

Generally, vehicle-based algorithms are more often used 
than grid-based algorithms. Even if the number of vehicles is 
massive, with the application of parameter sharing, the 
thousands of agents can learn in a centralized manner with a 
decentralized execution. Different from a grid-based 
algorithm, a vehicle-based algorithm can pay special attention 
to the vehicle and order's location and route. It uses the same 
order predictor and the state space as the grid-based 
algorithms while having a much simpler action space. But, 
after a re-position action is generated, to calculate the reward 
for this action in a more specific way, a vehicle routing 
module may be needed to simulate the travel cost. In all, the 
vehicle-based algorithms are more complicated than a grid-
based algorithm but it has more expanding space such as a 
heterogeneous way of designing agents and a more precise 
way to treat the interactions between agents. 

5) Innovative Algorithm 
Apart from the traditional multi-agent reinforcement 

learning way of solving vehicle re-positioning problem, there 
are two distinct and innovative methods. One is paying special 
attention to the interaction between agents and their influences 
on each other by applying mean-field reinforcement learning 
(MFRL) in a vehicle-based manner [17]. This technique of 
MFRL greatly reduces the state space from what used to 
consider all the other agents' joint action around the current 
one to a representation of their mean influence on the current 
one. Since it is not considering precisely the number of other 
agents or their features, the algorithm is providing a possible 
solution of treating agents heterogeneously. Another 
algorithm is based on the grid system. It applies the 
hierarchical multi-agent reinforcement learning to the 
hexagonal grid system where the grids are further specified as 
manager and worker [20]. The hierarchical reinforcement 
learning algorithms is proved to perform better at solving 
complex problems than other algorithms. 

IV. CHALLENGES   AND   OPPORTUNITIES 

So far, Reinforcement Learning algorithms have been 
proved to perform well in help solving fleet management 
problems. Its capability of addressing complicated tasks in a 
real-world scenario assisted many startups gaining profit. 
Also, researchers are still paying efforts to make their 
algorithms able to handle emerging real-world problems. In 
this section, we discuss some of the problems to be solved in 
reinforcement learning's application in fleet management as 
well as providing some of the possible directions for solutions. 



A. Unifying dispatching and re-positioning 

While the problem of order dispatch and vehicle re-
position have been both well studied, they are mostly 
conducted in a separated manner, which means, that most 
paper either propose an algorithm designed to solve 
specifically one of the two problems. However, order 
dispatching and vehicle re-positioning have a strong 
connection with each other. 

When doing order-dispatching, we are not only matching 
the drivers with a suited order but also evaluating what impact 
such matching could have on the demand and supply gap of 
both the zone where the order generated as well as the order's 
destination. The order dispatching problem can be considered 
as a limited vehicle re-positioning problem in that the vehicle 
have limited choices of action where the action determines 
both the income for the driver and the destination to re-
position. Unlike the normal re-position problem, order 
dispatching has a re-position impact that is highly depending 
on the available orders. Compared with the broader neighbor 
zones to choose in vehicle re-positioning, order dispatching's 
re-position is deeper which often consider zones away from 
the current zone. 

From another aspect, when doing vehicle re-positioning, 
for a reinforcement learning algorithms to perform as 
expected, researchers have to design the rewards for every re-
position action. Since every re-positioning action is assigned 
with a reward, this has the same property as the actions in 
order dispatching. If we represent the reward of an action in 
the same way as the income in order dispatching and transfer 
the possible zones to re-position as the destination for an 
order, then the re-positioning problem can be seen in an order 
dispatching way where the agent have to choose and order to 
pick up, thus achieving the same effect as vehicle re-
positioning. 

There are rarely papers focusing both the order 
dispatching and vehicle re-positioning problems. [28] 
proposed an algorithm for vehicle re-positioning but also 
integrated the order dispatching module into their simulator 
where vehicles are matched with the nearest order. They 
treated the two problems respectively rather than a unified 
manner. The idea of using fake order was first proposed by 
[20], where they unified the vehicle re-positioning with order 
dispatching and designed an order dispatching algorithm to 
solve the two problems. 

Future research should focus on integrating the order 
dispatching and vehicle re-positioning in one general system. 
Finding a way to unify the two problems is promising 
considering the relationship is not to be neglected while 
solving two problems respectively is computationally 
expensive. 

B. Map representation 

Map representation acts as a necessary module in fleet 
management to embed the geographical position into a 
discrete state. The majority of existing methods follow a 
similar convention and use gird system to split the spatial 
world, with the shape of square [15, 33], or hexagon [10, 16, 
17, 20, 34]. By selecting the neighbors of the grid, we can 
simply get a rather rational range of consideration in dealing 

with the interactions of agents. [15] supports multiple 
resolutions of hexagonal grids, which helps the information 
aggregation to happen at a different level. [33] uses cluster to 
divide the megacity into independent regions and focus on 
each of them separately, reducing the complexity.  

However, a more reasonable representation of the map 
should consider the topological of the road. The coarse-
grained grid representation cannot capture the real distance 
from place to place. To be worse, the complicated road in 
urban may deteriorate the planning and lead to infeasible 
operation strategies. [14] builds a link-node-based micro-
network representation and have successfully applied MARL 
on it, which is prospective.  

The previous learning on order dispatching and re-
positioning put little concentration on the selection of the map 
representation method. In fact, map representation based on 
real-world transportation networks has been learned in vehicle 
routing problem (VRP) rather sufficiently [35, 36]. Further 
exploration on the integration of the map representation 
module with fleet management will be productive. 

C. Adaptability to emergencies 

According our survey, the learning and planning approach 
[8, 9, 15], and its variants [14, 21], have been widely used in 
fleet management. Based on historical data, the off-line 
learning step enables the model to predict the distribution of 
demand and supply, therefore capable of arranging the fleets 
to fill the gap in advance. The centralized online planning step, 
helps the platform to coordinate the actions of agents, 
optimize the reward of the whole system.  

However, while researchers are trying to improve the 
performance of the algorithm, the risks of emergencies are 
ignored. The off-line training doesn't extract the causality of 
the transition of the supply and demand but directly learns the 
state-value on each timestep, viz. The prediction of state-value 
is more likely to be a replay of historical tendency and hardly 
consider the current situation. To deal with the challenge, [15, 
16] redesigned the DRL network and take the current state as 
part of the input in the planning step. This shortage may be 
fatal when a large difference takes place between the real-
world situation and historical situation, let alone the abrupt of 
the emergent incident. How to improve the robustness of the 
system from the real-time update part should be learnt in the 
future.  

Another concern about the adaptability to the emergency 
of the system is the “single point of failure” [18]. [17] goes 
further on the design of the distributed system, which depends 
little on the central control.  

Although [14] points that such non-cooperative learning 
may harm the system episode reward, the capability for the 
vehicle to continually provide a sub-optimal arrangement to 
itself when temporarily disconnected to the control center is 
of no doubt significant. This backup system may be of 
necessity where the connection is not reliable. Considering the 
recent development of Internet of Things (IoT) and the 
Internet of Vehicles (IoV), the distributed execution could be 
practical and prospective. 



D. Heterogeneous fleet 

To reduce computational complexity, literatures consider 
the vehicles and orders as heterogeneous and ignore the 
though obvious distinctions between each driver and 
costumer. 

On one hand, for each driver, they may have their own 
destinations like their living places at a certain time, or they 
may have certain preferences of routes since some drivers 
prefer to take the route that are faster and the others may favor 
those routes which are easy to drive on. When doing order 
dispatching, those features or preferences of drivers may 
influence their degree of satisfaction on the dispatch result. On 
the other hand, for costumers, they may also have preferences 
or special needs which will greatly influence their riding 
experience and thus their degrees of satisfaction also. 

The driver's preference has to be stressed when 
considering vehicle re-positioning. In real-world practice, 
drivers may have their own pattern of seeking customer, for 
instance, some drivers may prefer to route around the city 
railway station while others may show a special favor for the 
shopping centers. Having this specific preference when doing 
re-positioning, the system have to make decisions which not 
only balance the demand and supply but also satisfy the 
driver's preference. There are a lot of papers using the order 
reject rate to evaluate their algorithm's advantage, however 
not any paper uses the driver reject rate to evaluate whether 
their re-position action is disobeyed by the driver and 
considered as noneffective which is normally observed in 
real-world scenarios. 

Finding an approach to bring in the heterogeneous features 
of both the driver and consumer into the reinforcement 
learning system in fleet management is what future researches 
should focus on. Researches have already been conducted on 
modeling drivers routing patterns as well as their driving 
preferences but are all based on a small scale of drivers and 
none was used in practice to help addressing fleet 
management problems [37, 38].  

V. CONCLUSION 

The fleet management problems are increasingly 
important in our daily life now. In this paper the fleet 
management problems are divided into three parts: order 
dispatching, vehicle routing and re-positioning. This paper 
mainly focused on reviewing the methods of order dispatching 
and re-positioning questions using multi-agent reinforcement 
learning. Meanwhile, the basic knowledge of single and multi-
agent reinforcement learning is presented. Various methods 
solving the two problems were generally separated to three 
categories based on the choice of applying vehicle-based 
agent or grid-based agent, along with some extended work of 
the former categories. The representative methods are 
introduced and explained in this paper. Furthermore, the real-
life applications of multi-agent reinforcement learning are 
investigated. The challenges and possible opportunities in 
improving fleet management system with multi-agent 
reinforcement learning are also discussed.   
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